470 resultados para Ultraviolet luminescence
Resumo:
In this work. an alpha-Al2O3:C crystal was directly grown by the temperature gradient technique (TGT) using Al2O3 and graphite powders as the raw materials. The optical, optically stimulated luminescence (OSL) properties and dosimetric characteristics of as-grown crystal were investigated. As-grown alpha-Al2O3:C crystal shows strong absorption band at 205, 230 and 256 nm. Three-dimensional thermoluminescence (TL) emission spectrum of the crystal shows a single emission peak at similar to 415 nm. The OSL decay curve can be fitted to two exponentials, the faster component and the slower component. The OSL response of the crystal shows a linear-sublinear-saturation characteristic. As-grown alpha-Al2O3:C crystal shows excellent linearity in the dose range from 5 x 10(-6) to 50 Gy. For doses higher than the saturation dose (100 Gy). the OSL sensitivity decreases as the dose increases. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
The optical absorption edge and ultraviolet (UV) emission energy of ZnO films deposited by direct current (DC) reactive magnetron sputtering at room temperature have been investigated. With the oxygen ratio increasing, the structure of films changes from zinc and zinc oxide coexisting phase to single-phase ZnO and finally to the highly (002) orientation. Both the grain size and the stress of ZnO film vary with the oxygen partial pressure. Upon increasing the oxygen partial pressure in the growing ambient, the visible emission in the room-temperature photoluminescence spectra was suppressed without sacrificing the band-edge emission intensity in the ultraviolet region. The peaks of photoluminescence spectra were located at 3.06---3.15 eV. From optical transmittance spectra of ZnO films, the optical band gap edge was observed to shift towards shorter wavelength with the increase of oxygen partial pressure.
Resumo:
4H-silicon carbide (SiC) metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with Al2O3/SiO2 (A/S) films employed as antireflection/passivation layers have been demonstrated. The devices showed a peak responsivity of 0.12 A/W at 290 nm and maximum external quantum efficiency of 50% at 280 nm under 20 V electrical bias, which were much larger than conventional MSM detectors. The redshift of peak responsivity and response restriction effect were found and analyzed. The A/S/4H-SiC MSM photodetectors were also shown to possess outstanding features including high UV to visible rejection ratio, large photocurrent, etc. These results demonstrate A/S/4H-SiC photodetectors as a promising candidate for OEIC applications. (C) 2008 American Institute of Physics.
Resumo:
Biological soil crusts are important in reversing desertification. Ultraviolet radiation, however, may be detrimental for the development of soil crusts. The cyanobacterium Microcoleus vaginatus can be a dominant species occurring in desert soil crusts all over the world. To investigate the physico-chemical consequences of ultraviolet-B radiation on M. vaginatus, eight parameters including the contents of chlorophyll a, reactive oxygen species, malondialdehyde and proline, as well as the activities of photosynthesis, superoxide dismutase (EC 1.15.1.1), peroxiclase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were determined. As shown by the results of determinations, ultraviolet-B radiation caused decreases both in contents of chlorophyll a and in ratios of variable fluorescence over maximum fluorescence that indicate the growth and photosynthesis of M. vaginatus, besides, increases both in levels of reactive oxygen species and in contents of malondialdehyde and proline, while intensified activities of superoxide dismutase, peroxiclase and catalase reflecting the abilities of enzymatic preventive substances to oxidative stress of the treated cells. Therefore, ultraviolet-B radiation affects the growth of M. vaginatus and leads to oxidative stress in cells. Under ultraviolet-B radiation, the treated cells can improve their antioxidant abilities to alleviate oxidative injury. The change trends of reactive oxygen species, superoxide dismutase, peroxiclase and catalase are synchronous. These results suggest that a balance between the antioxidant system and the reactive oxygen species content may be one part of a complex stress response pathway in which multiple environmental factors including ultraviolet-B radiation affect the Survival of M. vaginatus. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Phytoplanktonic species acclimated to high light are known to show less photoinhibition. However, little has been documented on how cells grown under indoor conditions for decades without exposure to UV radiation (UVR, 280-400 nm) would respond differently to solar UVR compared to those in situ grown under natural solar radiation. Here, we have shown the comparative photosynthetic and growth responses to solar UVR in an indoor-(IS) and a naturally grown (WS) Skeletonema costatum type. In short-term experiment (<1 day), phi(PSII) and photosynthetic carbon fixation rate were more inhibited by UVR in the IS than in the WS cells. The rate of UVR-induced damages of PSII was faster and their repair was significantly slower in IS than in WS. Even under changing solar radiation simulated for vertical mixing, solar UVR-induced higher inhibition of photosynthetic rate in IS than in WS cells. During long-term (10 days) exposures to solar radiation, the specific growth rate was much lower in IS than WS at the beginning, then increased 3 days later to reach an equivalent level as that of WS. UVR-induced inhibition of photosynthetic carbon fixation in the IS was identical with that of WS at the end of the long-term exposure. The photosynthetic acclimation was not accompanied with increased contents of UV-absorbing compounds, indicating that repair processes for UVR-induced damages must have been accelerated or upgraded. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of similar to 30 degrees C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280-400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400-700 nm] and PAB [PAR + UV-A + UV-B: 280-700]), three temperatures (15, 22, and 30 degrees C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] . L-1). UVR caused a breakage of the spiral structure at 15 degrees C and 22 degrees C, but not at 30 degrees C. High PAR levels also induced a significant breakage at 15 degrees C and 22 degrees C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15 degrees C but was relatively high at 30 degrees C even under the treatment with UVR in 8 h. At 30 degrees C, UVR led to 93%-97% less DNA damage when compared with 15 degrees C after 8 h of exposure. UV-absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature-dependent effects of UVR on this organism are discussed in this paper.
Resumo:
In order to assess the short- and long-term impacts of UV radiation (LTVR, 280-400 nm) on the red tide alga, Heterosigma akashiwo, we exposed the cells to three different solar radiation treatments (PAB: 280-700 rim, PA: 320-700 nm, R 400-700 nm) under both solar and artificial radiation. A significant decrease in the effective quantum yield () during high irradiance periods (i.e., local noon) was observed, but the cells partially recovered during the evening hours. Exposure to high irradiances for 15, 30, and 60 min under a solar simulator followed by the recovery (8 h) under dark, 9 and 100 mu mol photons m(-2) s(-1) of PAR, highlighted the importance of the irradiance level during the recovery period. Regardless the radiation treatments, the highest recovery (both in rate and total Y) was found at a PAR irradiance of 9 mu mol photons m(-2) s(-1), while the lowest was observed at 100 mu mol photons m(-2) s(-1). In all experiments, PAR was responsible for most of the observed inhibition; nevertheless, the cells exposed only to PAR had the highest recovery in any condition, as compared to the other radiation treatments. In long-term experiments (10 days) using semi-continuous cultures, there was a significant increase of UV-absorbing compounds (UVabc) per cell from 1.2 to > 4 x 10(-6) mu g UVabc cell(-1) during the first 3-5 days of exposure to solar radiation. The highest concentration of UVabc was found in samples exposed in the PAB as compared to PA and P treatments. Growth rates (mu) mimic the behavior of UV-absorbing compounds, and during the first 5 days mu increased from < 0.2 to ca. 0.8, and stayed relatively constant at this value during the rest of the experiment. The inhibition of the Y decreased with increasing acclimation of cells. All our data indicates that H. akashiwo is a sensitive species, but was able acclimate relatively fast (3-5 days) synthesizing UV-absorbing compounds and thus reducing any impact either on photosystem 11 or on growth. (c) 2006 Published by Elsevier B.V.
Resumo:
Effects of solar ultraviolet radiation (UVR) on Spirulina platensis were studied by investigating its photochemical efficiency, photosynthetic pigments and biomass production while exposed to full spectrum solar radiation or depleted of UVR for understanding how and to what extent UVR influences its photosynthetic physiology and production. It was found that UVR brought about an extra inhibition of photochemical efficiency by 26%-30%. The greatest inhibition of photochemical efficiency in S. platensis was observed at noontime, and then recovered to some extent in late afternoon no matter which treatment they were exposed to. The contents of chlorophyll a, phycocyanin and carotenoids increased during initial stage of the exposure, but decreased with elongated exposure. UVR decreased the biomass yield by about 6%. It indicated that filtering out UVR of solar radiation would raise the productivity of S. platensis, which is an important factor that should be considered in the production.