251 resultados para Spontaneous generation
Resumo:
In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.
Resumo:
Fourth-order spatial interference of entangled photon pairs generated in the process of spontaneous parametric down-conversion pumped by a femtosecond pulse laser has been performed for the first time. In theory, it takes into account the transverse correlation between the two photons and is used to calculate the dependence of the visibility of the interference pattern obtained in Young's double-slit experiment. In this experiment, a short focal length tens and two narrow band interference filters were adopted to eliminate the effects of the broadband pump laser and improve the visibility of the interference pattern under the condition of nearly collinear light and degenerate phase matching.
Resumo:
The size of equilateral triangle resonator (ETR) needed for confining the fundamental mode is investigated by the total reflection condition of mode light rays and the FDTD numerical simulation. The confinement of the TM modes can be explained by the total reflection of mode light rays, and the confinement of the TE modes requires a larger ETR than the TM modes, which may be caused by excess scattering or radiation loss for the TE modes. With the multilayer staircase approximation, it is found that the spontaneous emission factor of the ETR lasers has the same form as that of strip waveguide lasers.
Resumo:
We have used the transverse correlated properties of the entangled photon pairs generated in the process of spontaneous parametric down-conversion, which is pumped by a femtosecond pulse laser, to perform Young's interference experiment. Unlike the case of a continuous wave laser pump, a broadband pulse laser pump can submerge an interference pattern. In order to obtain a high visibility interference pattern, we used a lens with a tunable focal length and two interference filters to eliminate the effects of the broadband pump laser. It is proven that the process of two-photon direct interference is a post-selection process.
Resumo:
A theoretical model accounting for the macropolarization effects in wurtzite III-V nitrides quantum wells (QWs) is presented. Energy dispersions and exciton binding energies are calculated within the framework of effective-mass theory and variational approach, respectively. Exciton-associated transitions (EATs) are studied in detail. An energy redshift as high as 450 meV is obtained in Al0.25GaN0.75/GaN QWs. Also, the abrupt reduction of optical momentum matrix elements is derived as a consequence of quantum-confined Stark effects. EAT energies are compared with recent photoluminescence (PL) experiments and numerical coherence is achieved. We propose that it is the EAT energy, instead of the conduction-valence-interband transition energy that is comparable with the PL energy. To restore the reduced transition rate, we apply an external electric field. Theoretical calculations show that with the presence of the external electric field the optical matrix elements for EAT increase 20 times. (C) 2001 American Institute of Physics.
Resumo:
A novel AC driving configuration is proposed for biased semiconductor superlattices, in which the THz driving is provided by an intense bichromatic cw laser in the visible light range. The frequency difference between two components of the laser is resonant with the Bloch oscillation. Thus, multi-photon processes mediated by the conduction (valence) band states lead to dynamical delocalization and localization of the valence (conduction) electrons, and to the formation and collapse of quasi-minibands. Thus, driven Bloch oscillators are predicted to generate persistent THz emission and harmonics of the dipole field, which are tolerant of the exciton and the relaxation effects.
Resumo:
The real-time monitoring of the second-harmonic generation (SHG) was used to optimize the poling condition and to study the nonlinear optical (NLO) properties of the polyetherketone (PEK-c) guest-host polymer films. The high second-order NLO coefficient chi(33)((2)) = 11.02 pm/v measured at 1.064 mu m was achieved when the weight percent of DR1 guest in the polymer system is 20%. The NLO activity of the poled DR1/PEK-c polymer film can maintain more than 80% of its initial value when temperature is under 100 degrees C, and the normalized second-order NLO coefficient can maintain more than 85% after 2400 s at 80 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Low-temperature-grown GaAs (LT-GaAs) of 1-um thickness was grown at 250 degrees C on semi-insulating GaAs (001) substrate using EPI GEN-II solid-source MBE system. The sample was then in situ annealed for 10 min at 600 degrees C under As-rich condition. THz emitters were fabricated on this LTGaAs with three different photoconductive dipole antenna gaps of 1-mm, 3-mm, and 5-mm, respectively. The spectral bandwidth of 2.75 THz was obtaind with time domain spectroscopy. It is found that THz emission efficiency is increased with decreasing antenna gap. Two carrier lifetimes, 0.469 ps and 3.759 ps, were obtained with time-resolved transient reflection-type pump-probe spectroscopy.
Resumo:
A novel device of tandem multiple quantum wells (MQWs) electroabsorption modulators (EAMs) monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 mbar) selective area guowth (SAG) MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mX output light power of 4.5 mW and over 20 dB extinction ratio when coupled into a single mode Fiber. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using I this sinusoidal voltage driven integrated device, 10GHz repetition rate pulse with a width of 13.7 ps without any compression elements is obtained.
Resumo:
A V-shaped solar cell module consists of two tilted mono-crystalline cells [J. Li, China Patent No. 200410007708.6 (March, 2004)]. The angle included between the two tilted cells is 90 degrees. The two cells were fabricated by using polished silicon wafers. The scheme of both-side polished wafers has been proposed to reduce optical loss. Compared to solar cells in a planar way, the V-shaped structure enhances external quantum efficiency and leads to an increase of 15% in generation photocurrent density. The following three kinds of trapped photons are suggested to contribute to the increase: (1) infrared photons converted from visible photons due to a transformation mechanism, (2) photons reflected from top contact metal, and (3) a residual reflection which can not be eliminated by an antireflection coating.
Resumo:
The tandem organic light-emitting diodes (OLEDs) with an effective charge-generation connection structure of Mg-doped tris(8-hydroxyquinoline) aluminum (Alq(3))/Molybdenum oxide (MoO3)-doped 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) were presented. At a current density of 50 mA/cm(2), the current efficiency of the tandem OLED with two standard NPB/Alq(3) emitting units is 4.2 cd/A, which is 1.7 times greater than that of the single EL device. The tandem OLED with the similar connection structure of Mg-doped PTCDA/MoO3-doped PTCDA was also fabricated and the influences of the different connection units on the current efficiency of the tandem OLED were discussed as well.
Resumo:
In a typical thermoelectric device, a junction is formed from two different conducting materials, one containing positive charge carriers (holes) and the other negative charge carriers (electrons). When an electric current is passed in the appropriate direction through the junction, both types of charge carriers move away from the junction and convey heat away, thus cooling the junction. Similarly, a heat source at the junction causes carriers to flow away from the junction, making an electrical generator. Such devices have the advantage of containing no moving parts, but low efficiencies have limited their use to specialty applications, such as cooling laser diodes. The principles of thermoelectric devices are reviewed and strategies for increasing the efficiency of novel materials are explored. Improved materials would not only help to cool advanced electronics but could also provide energy benefits in refrigeration and when using waste heat to generate electrical power.
Resumo:
With the advancement in network bandwidth and computing power, multimedia systems have become a popular means for information delivery. However, general principles of system testing cannot be directly applied to testing of multimedia systems on account of their stringent temporal and synchronization requirements. In particular, few studies have been made on the stress testing of multimedia systems with respect to their temporal requirements under resource saturation. Stress testing is important because erroneous behavior is most likely to occur under resource saturation. This paper presents an automatable method of test case generation for the stress testing of multimedia systems. It adapts constraint solving techniques to generate test cases that lead to potential resource saturation in a multimedia system. Coverage of the test cases is defined upon the reachability graph of a multimedia system. The proposed stress testing technique is supported by tools and has been successfully applied to a real-life commercial multimedia system. Although our technique focuses on the stress testing of multimedia systems, the underlying issues and concepts are applicable to other types of real-time systems.