158 resultados para Paraskevopoulos, Stephtn C. A.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of the strained wurtzite GaN are investigated theoretically within the nearest neighbor tight-binding method. The piezoelectric effect is also taken into account. The empirical rule has been used in the strained band-structure calculation. The results show that the excitonic transition energies are anisotropic in the c-plane in a high electronic concentration system and have a 60 degrees periodicity, which is in agreement with experiment. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3001937]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetragonal PbTiO3 under uniaxial stress along the c-axis is investigated from first-principles. The structural parameters, polarization, and squares of the lowest optical phonon frequencies for E(1TO) and A(1)(1TO) modes at Gamma show abrupt changes near a stress sigma(c) of 1.04 GPa, which is related to the dramatic change of elastic constant c(33) resulting from the uniaxial stress applied along the c-axis. We also find that the uniaxial compressive stress could enhance the piezoelectric stress coefficients, whereas the uniaxial tensile stress could enhance the piezoelectric strain coefficients. It is also found that when the magnitude of uniaxial compressive stress sigma(33) is greater than 12 GPa, PbTiO3 is transformed to the paraelectric tetragonal phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe films with the different thicknesses were grown on c(4x4) reconstructed GaAs (001) surfaces at low temperature by molecular-beam epitaxy. Well-ordered bcc structural Fe epitaxial films are confirmed by x-ray diffraction patterns and high-resolution cross-sectional transmission electron microscopy images. A large lattice expansion perpendicular to the surface in Fe film is observed. In-plane uniaxial magnetic anisotropy is determined by the difference between magnetizing energy along [110] and [110] directions, and the constant of interfacial uniaxial magnetic anisotropy is calculated to be 1.02x10(-4) J m(-2). We also find that magnetic anisotropy is not obviously influenced after in situ annealing, but in-plane strain is completely changed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth direction of ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD) is modulated by pretreatment of (001) SMO3 (STO) substrates. ZnO films show a-oriented smooth surface with epitaxial relationship of < 001 > ZnO//< 110 > STO on as-received SfO, and c-axis columnar growth with < 010 > ZnO//< 110 > STO on etched STO, respectively. The orientation alteration of ZnO films is supposed to be caused by the change of STO surface polarity. In addition, the c-ZnO films exhibit an enhanced photoluminescence (PL) intensity due to the improved crystal quality, while the blueshift of PL peak is attributed to the smaller tensile strain. These results show that high quality c-ZnO, which is essential for electronic and optoelectronic device applications, can be grown on (001) SfO by MOCVD. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on our experimental research on diphasic silicon films, the parameters such as absorption coefficient, mobility lifetime product and bandgap were estimated by means of effective-medium theory. And then computer simulation of a-Si: H/mu c-Si: H diphasic thin film solar cells was performed. It was shown that the more crystalline fraction in the diphasic silicon films, the higher short circuit density, the lower open-circuit voltage and the lower efficiency. From the spectral response, we can see that the response in long wave region was improved significantly with increasing crystalline fraction in the silicon films. Taking Lambertian back refraction into account, the diphasic silicon films with 40%-50% crystalline fraction was considered to be the best intrinsic layer for the bottom solar cell in micromorph tandem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report comparative luminescence properties of multi-layer InGaN quantum dots grown on C- and R-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). High-density InGaN quantum dots (QDs) are formed on GaN templates by decreasing the growth temperature and increasing the adatom hopping-barrier through surface passivation. Atomic force microscopy (AFM) has been employed to estimate the size and height of these dots. Photoluminescence (PL) spectra recorded from (1120) InGaN QDs/(1102) sapphire show much stronger emission intensity compared to spectra recorded from (0001) InGaN QDs/(0001) sapphire. Due to the absence of strong spontaneous polarization and piezoelectric field, such (1150) InGaN QDs in the active layers would lead to high efficiency light emitting devices. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hetero-junction solar cells with an me-Si: H window layer were achieved. The open voltage is increased while short current is decreased with increasing the mc-Si:H layer's thickness of emitter layer. The highest of V-oc of 597 mV has obtained. When fixed the thickness of 30 nm, changing the N type from amorphous silicon layer to micro-crystalline layer, the efficiency of the hetero-junction solar cells is increased. Although the hydrogen etching before deposition enables the c-Si substrates to become rough by AFM images, it enhances the formation of epitaxial-like micro-crystalline silicon and better parameters of solar cell can be obtained by implying this process. The best result of efficiency is 13.86% with the V-oc of 549.8 mV, J(sc) of 32.19 mA center dot cm(-2) and the cell's area of 1 cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Natural Science Foundation of China 60836002 10674130 60521001;Major State Basic Research of China 2007CB924903;Chinese Academy of Sciences KJCX2.YW.W09-1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. C=O compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/1T0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 mu m)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm(2). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) layers of boron-doped increasing step by step was deposited on n-type crystalline silicon substrate using Plasma Enhanced Chemical Vapor Deposition (PECVD) system. After evaporating Ohm contact electrode on the side of substrate and on the side of nc-Si:H film, a structure of electrode/ (p)nc-Si:H/(n)c-Si/electrode was obtained. It is confirmed by electrical measurement such as I-V curve, C-V curve and DLTS that this is a variable capacitance diode. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress states in unintentionally doped GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire, and their effects on optical properties of GaN films were investigated by means of room-temperature confocal micro-Raman scattering and photoluminescence techniques. Relatively large tensile stress exists in GaN epilayers grown on Si and 6H-SiC while a small compressive stress appears in the film grown on sapphire. The latter indicates effective strain relaxation in the GaN buffer layer inserted in the GaN/sapphire sample, while the 50-nm-thick AlN buffer adopted in the GaN/Si sample remains highly strained. The analysis shows that the thermal mismatch between the epilayers and the substrates plays a major role in determining the residual strain in the films. Finally, a linear coefficient of 21.1+/-3.2 meV/GPa characterizing the relationship between the luminescent bandgap and the biaxial stress of the GaN films is obtained. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films of high glass' transition temperature polymer polyetherketone doped with chromophore 2,2'[4-[(5-nitro-2-thiazolyl)azophenyl]-amino]-bisethanol NTAB) were prepared, poled by the corona-onset poling setup which includes a grid voltage making the surface-charge distribution uniform at elevated temperature. The thickness of the films was measured by the Model 2010 Prism Coupler system. Second harmonic generation d(33) was measured by the second harmonic generation method, and the d33 is 38.12 pm/V at 1064 nm under the absorption correction. The nonlinear optical activity maintains is 80% of its initial value. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMPS simulator, which was developed by Pennsylvania State University, has been used to simulate photovoltaic performances of nc-Si:H/c-Si solar cells. It is shown that interface states are essential factors prominently influencing open circuit voltages (V-OC) and fill factors (FF) of these structured solar cells. Short circuit current density (J(SC)) or spectral response seems more sensitive to the thickness of intrinsic a-Si:H buffer layers inserted into n(+)-nc-Si:H layer and p-c-Si substrates. Impacts of bandgap offset on solar cell performances have also been analyzed. As DeltaE(C) increases, degradation of VOC and FF owing to interface states are dramatically recovered. This implies that the interface state cannot merely be regarded as carrier recombination centres, and impacts of interfacial layer on devices need further investigation. Theoretical maximum efficiency of up to 31.17% (AM1.5,100mW/cm(2), 0.40-1.1mum) has been obtained with BSF structure, idealized light-trapping effect(R-F=0, R-B=1) and no interface states.