415 resultados para Pó de borracha
Resumo:
Using the first-principles band-structure method, we investigate the p-type doping properties and band structural parameters of the random Ga1-xInxN1-yAsy quaternary alloys. We show that the Mg-Ga substitution is a better choice than ZnGa to realize the p-type doping because of the lower transition energy level and lower formation energy. The natural valence band alignment of GaAs and GaInNAs alloys is also calculated, and we find that the valence band maximum becomes higher with the increasing in composition. Therefore, we can tailor the band offset as desired which is helpful to confine the electrons effectively in optoelectronic devices. (C) 2008 Published by Elsevier B.V.
Resumo:
Visible-blind p-i-n avalanche photodiodes (APDs) were fabricated with high-quality GaN epilayers deposited on c-plane sapphire substrates by metal-organic chemical vapour deposition. Due to low dislocation density and a sophisticated device fabrication process, the dark current was as small as similar to 0.05 nA under reverse bias up to 20V for devices with a large diameter of 200 mu m, which was among the largest device area for GaN-based p-i-n APDs yet reported. When the reverse bias exceeded 38V the dark current increased sharply, exhibiting a bulk avalanche field-dominated stable breakdown without microplasma formation or sidewall breakdown. With ultraviolet illumination (360 nm) an avalanche multiplication gain of 57 was achieved.
Resumo:
The leakage mechanism of GaN-based p-i-n (p-AlGaN/i-GaN/n-GaN) UV detector has been investigated. With the same dislocation density, devices made from material with higher density of V-pits on surface produce larger leakage current. SEM images show that some V-pits penetrate into i-GaN layer, sometimes even the n-GaN layer. If p-ohmic contact metal (Ni/Au) deposits in the V-pits, Schottky contact would be formed at the interface of metal and i-GaN, or form ohmic contact at the interface of metal and n-GaN. The existence of parallel Schottky junction and ohmic contact resistance enhances the leakage current greatly.
Resumo:
A new ultraviolet photodetector of employing p menus type GaN (p(-)-GaN) as the active layer is proposed. It is easy to obtain the p(-)-GaN layer with low carrier concentration. As a result, the depletion region can be increased and the quantum efficiency can be improved. The influence of some structure parameters on the performance of the new device is investigated. Through the simulation calculation, it is found that the quantum efficiency increases with the decrease of the barrier height between the metal electrode and the p(-)-GaN layer, and it is also found that the quantum efficiency can be improved by reducing the thickness of the p(-)-GaN layer. To fabricate the new photodetector with high performance, we should employ thin p(-)-GaN layer as the active layer and reduce the Schottky barrier height.
Resumo:
Mg-doped p-InGaN layers with In composition of about 10% are grown by metalorganic chemical vapor deposition (MOCVD). The effect of the annealing temperature on the p-type behavior of Mg-doped InGaN is studied. It is found that the hole concentration in p-InGaN increases with a rising annealing temperature in the range of 600 850 C, while the hole mobility remains nearly unchanged until the annealing temperature increases up to 750 C, after which it decreases. On the basis of conductive p-type InGaN growth, the p-In0.1Ga0.9N/i-In0.1Ga0.9N/n-GaN junction structure is grown and fabricated into photodiodes. The spectral responsivity of the InGaN/GaN p-i-n photodiodes shows that the peak responsivity at zero bias is in the wavelength range 350-400 nm.
Resumo:
Undoped, S-doped and Fe-doped InP crystals with diameter up to 4-inch have been pulled in drop 10 0 drop -direction under P-rich condition by a rapid P-injection in situ synthesis liquid encapsulated Czochralski (LEC) method. High speed photoluminescence mapping, etch-pit density (EPD) mapping and scanning electron microscopy have been used to characterize the samples of the single crystal ingots. Dislocations and electrical homogeneity of these samples are investigated and compared. By controlling the thermal field and the solid-liquid interface shape, 4-inch low-EPD InP single crystals have been successfully grown by the rapid P-injection synthesis LEC method. The EPD across the wafer of the ingots is less than 5 x 10(4) cm(-2). Cluster defects with a pore center are observed in the P-rich LEC grown InP ingots. These defects are distributed irregularly on a wafer and are surrounded by a high concentration of dislocations. The uniformity of the PL intensity across the wafer is influenced by these defects. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This letter presents a new method for extracting the intrinsic frequency response of a p-i-n photodiode (PD) from the measured frequency response of the PD at different bias voltages. This method is much simpler than the conventional calibration method, since only the measured scattering parameters are required, and there is no need to calibrate the test fixtures and the lightwave source. Experiment shows that the proposed method is as accurate as the calibration method.
Resumo:
We investigate a new structure of high-power 660-nm AlGaInP laser diodes. In the structure, a p-GaAs layer is grown on the ridge waveguide serving as the current-blocking layer, and nonabsorbing windows are only fabricated near the cavity facets to increase the catastrophic-optical-damage level. Stable fundamental mode operation was achieved at up to 80 mW without kinks, and the maximum output power was 184 mW at 22 degrees C. The threshold current was 40 mA.
Resumo:
In this paper frequency dependence of small-signal capacitance of p-i-n UV detectors, which were fabricated on GaN grown on sapphire substrate by metalorganic chemical vapor deposition, has been studied. The Schibli-Milnes model was used to analyze the capacitance-frequency characteristics. According to high frequency C-V measurements, the deep level mean concentration is about 2.98 x 10(20) cm(-3). The deep level is caused by the un-ionised Mg dopant. The calculated Mg activation energy is 260 meV and the hole thermal capture cross section of the deep level is about 2.73 x 10(-22) cm(2). The applicability of the Schibli-Milnes model is also discussed when the concentration of deep levels exceeds that of the heavily doped n-side. It is concluded that the analytic expression of the Schibli-Milnes model can still be used to describe the capacitance-frequency characteristics of GaN p-i-n UV detectors in good agreement with experiment. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The successful application of boron-doped hydrogenated nanocrystalline silicon as window layer in a-Si: H nip solar cells on stainless steel foil with a thickness of 0.05 mm is reported. Open circuit voltage and fill factor of the fabricated solar cell were 0.90V and 0.70 respectively. The optical and structural properties of the p-layers have been investigated by using UV-VIS and Raman spectroscopy. It is confirmed that the p-layer is hydrogenated nanocrystalline silicon with a wide optical gap due to quantum size effect.
Resumo:
Homoepitaxial growth of 4H-SiC on off-oriented Si-face(0001) substrates was performed by using the step-controlled epitaxy technique in a newly developed low-pressure hot-wall CVD (LP-HWCVD) system with a horizontal air-cooled quartz tube at around 1500 degreesC and 1.33 x 10(4) Pa by employing SiH4 + C2H4 + H-2. In-situ doping during growth was carried out by adding NH3 gas into the precursor gases. It was shown that the maximum Hall mobility of the undoped 4H-SiC epilayers at room temperature is about 430 cm(2) (.) V-1 (.) s(-1) with a carrier concentration of similar to 10(16) cm(-3) and the highest carrier concentration of the N-doped 4H-SiC epilayer obtained at NH3 flow rate of 3 sccm is about 2.7 x 10(21) cm(-3) with a mobility of 0.75 cm(2) (.) V-1 (.) s(-1). SiC p-n junctions were obtained by epitaxially growing N-doped 4H-SiC epilayers on Al-doped 4H-SiC substrates. The C - V characteristics of the diodes were linear in the 1/C-3 - V coordinates indicating that the obtained p-n junctions were graded with a built-in voltage of 2.7 eV. The room temperature electroluminescence spectra of 4H-SiC p-n junctions are studied as a function of forward current. The D-A pair recombination due to nitrogen donors and the unintentional, deep boron center is dominant at low forward bias, while the D-A pair recombination due to nitrogen donors and aluminum acceptors are dominant at higher forward biases. The p-n junctions could operate at temperature of up to 400 degreesC, which provides a potential for high-temperature applications.
Resumo:
N-p-n Si/SiGe/Si heterostructures have been grown by a disilane (Si2H6) gas and Ge solid sources molecular beam epitaxy system using phosphine (PH3) and diborane (B2H6) as n- and p-type in situ doping sources, respectively. Adopting an in situ doping control technology, the influence of background B dopant on the growth of n-Si emitter layer was reduced, and an abrupt B dopant distribution from SiGe base to Si emitter layer was obtained. Besides, higher n-type doping in the surface region of emitter to reduce the emitter resist can be realized, and it did not result in the drop of growth rate of Si emitter layer in this technology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The electrical and structural properties of Mg delta-doped GaN epilayers grown by MOCVD were investigated. Compared to uniform Mg-doping GaN layers, it has been shown that the delta-doping (delta-doping) process could suppress the dislocation density and enhance the p-type performance. The influence of pre-purge step on the structural properties of GaN was also investigated. The hole concentration of p-GaN decreases when using a pre-purge step. These results can be explained convincingly using a simple model of impurity incorporation under Ga-free growth condition. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The electronic structures of InSb1-xNx nanowires are investigated using the ten-band k center dot p method. It is found that nitrogen increases the Rashba coefficient of the nanowires dramatically. For thick nanowires, the Rashba coefficient may increase by more than 20 times. The semiconductor-metal transition occurs more easily in InSb1-xNx nanowires than in InSb nanowires. The electronic structure of InSb1-xNx nanowires is very different from that of the bulk material. For fixed x the bulk material is a semimetal, while the nanowires are metal-like. In InSb1-xNx bulk material and thick nanowires, an interesting decrease of electron effective mass is observed near k=0 which is induced by the nitrogen, but this phenomenon disappears in thin nanowires.
Resumo:
This paper presents a detailed study on the effects of carbon incorporation and substrate temperature on structural, optical, and electrical properties of p-type nanocrystalline amorphous silicon films. A p-nc-SiC: H thin film with optical gap of 1.92 eV and activation energy of 0.06 eV is obtained through optimizing the plasma parameters. By using this p-type window layer, single junction diphasic nc-SiC : H/a-Si : H solar cells have been successfully prepared with a V-oc of 0.94 eV.