165 resultados para GAS-LIQUID INTERFACE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model for scattering due to interface roughness in finite quantum wells (QWs) is developed within the framework of the Boltzmann transport equation and a simple and explicit expression between mobility limited by interface roughness scattering and barrier height is obtained. The main advantage of our model is that it does not involve complicated wavefunction calculations, and thus it is convenient for predicting the mobility in thin finite QWs. It is found that the mobility limited by interface roughness is one order of amplitude higher than the results derived by assuming an infinite barrier, for finite barrier height QWs where x = 0.3. The mobility first decreases and then flattens out as the barrier confinement increases. The experimental results may be explained with monolayers of asperity height 1-2, and a correlation length of about 33 angstrom. The calculation results are in excellent agreement with the experimental data from AlxGa1-xAs/GaAs QWs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uniform and high phosphorous doping has been demonstrated during Si growth by GSMBE using disilane and phosphine. The p-n diodes, which consist of a n-Si layer and a p-SiGe layer grown on Si substrate, show a normal I-V characteristic. A roughening transition during P-doped Si growth is found. Ex situ SEM results show that thinner film is specular. When the film becomes thicker, there are small pits of different sizes randomly distributed on the flat surface. The average pit size increases, the pit density decreases, and the size distribution is narrower for even thicker film. No extended defects are found at the substrate interface or in the epilayer. Possible causes for the morphological evolution are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural characteristics of gallium nitride (GaN) films grown on sapphire(0001) substrates by gas source molecular beam epitaxy (GSMBE) have been investigated using high-resolution synchrotron irradiation X-ray diffraction and cathodoluminescence with a variable energy electron beam. Besides the well-known GaN hexagonal structure, a small portion of cubic phase GaN was observed. The X-ray measurements provide an essential means for the structural identification of the GaN layers. Arising from the variable penetration depth of the electron beam in the cathodoluminescence measurements, it was found that the fraction of the GaN cubic-phase typically increased as the probing depth was increased. The results suggest that the GaN cubic phase is mostly located near the interface between the substrate and GaN layer due to the initial nucleation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High quality silicon nanowires (SiNWs) were grown directly from n-(111) silicon single crystal substrate by using Au film as a metallic catalyst. The diameter and length of the formed nanowires are 30-60 nm and from several micrometers to sereral tens of micrometers, respectively. The effects of Au film thickness, annealing temperature, growth time and N-2 gas flow rate on the formation of the nanowires were experimentally investigated. The results confirmed that the silicon nanowires with controlled diameter, length, shape and orientation can be obtained via reasonably choosing and optimizing various technical conditions. The formation process of the silicon nanowires is analyzed qualitatively based on solid-liquid-solid growth mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient flow patterns and bubble slug lengths were investigated with oxygen gas (O-2) bubbles produced by catalytic chemical reactions using a high speed camera bonded with a microscope. The microreactor consists of an inlet liquid plenum, nine parallel rectangular microchannels followed by a micronozzle, using the MEMS fabrication technique. The etched surface was deposited by the thin platinum film, which is acted as the catalyst. Experiments were performed with the inlet mass concentration of the hydrogen peroxide from 50% to 90% and the pressure drop across the silicon chip from 2.5 to 20.0 kPa. The silicon chip is directly exposed in the environment thus the heat released via the catalytic chemical reactions is dissipated into the environment and the experiment was performed at the room temperature level. It is found that the two-phase flow with the catalytic chemical reactions display the cyclic behavior. A full cycle consists of a short fresh liquid refilling stage, a liquid decomposition stage followed by the bubble slug flow stage. At the beginning of the bubble slug flow stage, the liquid slug number reaches maximum, while at the end of the bubble slug flow stage the liquid slugs are quickly flushed out of the microchannels. Two or three large bubbles are observed in the inlet liquid plenum, affecting the two-phase distributions in microchannels. The bubble slug lengths, cycle periods as well as the mass flow rates are analyzed with different mass concentrations of hydrogen peroxide and pressure drops. The bubble slug length is helpful for the selection of the future microreactor length ensuring the complete hydrogen peroxide decomposition. Future studies on the temperature effect on the transient two-phase flow with chemical reactions are recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boundary condition at the solid surface is one of the important problems for the microfluidics. In this paper we study the effects of the channel sizes on the boundary conditions (BC), using the hybrid computation scheme adjoining the molecular dynamics (MD) simulations and the continuum fluid mechanics. We could reproduce the three types of boundary conditions (slip, no-slip and locking) over the multiscale channel sizes. The slip lengths are found to be mainly dependent on the interfacial parameters with the fixed apparent shear rate. The channel size has little effects on the slip lengths if the size is above a critical value within a couple of tens of molecular diameters. We explore the liquid particle distributions nearest the solid walls and found that the slip boundary condition always corresponds to the uniform liquid particle distributions parallel to the solid walls, while the no-slip or locking boundary conditions correspond to the ordered liquid structures close to the solid walls. The slip, no-slip and locking interfacial parameters yield the positive, zero and negative slip lengths respectively. The three types of boundary conditions existing in "microscale" still occur in "macroscale". However, the slip lengths weakly dependent on the channel sizes yield the real shear rates and the slip velocity relative to the solid wall traveling speed approaching those with the no-slip boundary condition when the channel size is larger than thousands of liquid molecular diameters for all of the three types of interfacial parameters, leading to the quasi-no-slip boundary conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microscopic characteristics of the GaAs(100) surface treated with P2S5/NH4OH solution has been investigated by using Auger-electron spectroscopy (AES) and x-ray photoemission spectroscopy (XPS). AES reveals that only phosphorus and sulfur, but not oxygen, are contained in the interface between passivation film and GaAs substrate. Using XPS it is found that both Ga2O3 and As2O3 are removed from the GaAs surface by the P2S5/NH4OH treatment; instead, gallium sulfide and arsenic sulfide are formed. The passivation film results in a reduction of the density of states of the surface electrons and an improvement of the electronic and optical properties of the GaAs surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experimental study on the oscillation flow characteristics of submerged supersonic gas jets issued from Laval nozzles. The flow pattern during the jet development and the jet expansion feedback phenomenon are studied using a high-speed camera and a pressure measurement system. The experimental results indicate that along the downstream distance, the jet has three flow regimes: (1) momentum jet; (2) buoyant jet; (3) plume. In the region near the nozzle exit a so-called bulge phenomenon is found. Bulging of the jet occurs many times before the more violent jet expansion feedback occurs. During the feedback process, the jet diameter can become several times that of the original one depending on the jet Mach number. The frequencies of the jet bulging and the jet expansion feedback are measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of gas bubbles in an immiscible bulk liquid with a temperature gradient at moderate to large Marangoni number is simulated numerically. Constant material properties of the two phases are assumed. Steady state of the motion can always be reached. The terminal migration velocity decreases monotonously with the increase of the Marangoni number due to the wrapping of isotherms around the front surface of the bubble. Good agreements with space experimental data and previous theoretical and numerical studies in the literature are evident. Slight deformation of bubble is observed, but no distinct influence on the motion occurs. It is also found that the influence of the convective transport of heat inside bubbles cannot be neglected at finite Marangoni number, while the influence of the convective transport of momentum inside bubbles may be actually negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A packed-bed electroosmotic pump (EOP) was constructed and evaluated. The EOP consisted of three capillary columns packed in parallel, a gas-releasing device, Pt electrodes and a high-voltage power supply. The EOP could generate output pressure above 5.0 MPa and constant flow rate in the range of nl/min to a few mul/min for pure water, pure methanol, 2 mM potassium dihydrogenphosphate buffer, the buffer-methanol mixture and the pure water-methanol mixture at applied potentials less than 20 W The composition of solvent before/after pumping was quantitatively determined by using a gas chromatograph equipped with both flame ionization detector and thermal conductivity detector. It was found that there were no apparent changes in composition and relative concentrations after pumping process for a methanol-ethanol-acetonitrile mixture and a methanol-water mixture. Theoretical aspect of the EOP was discussed in detail. An capillary HPLC system consisting of the EOP, an injection valve, a 15 cm x 320 mum i.d., 5 mum Spherigel C(18) stainless steel analytical column, and an on-column UV detector was connected to evaluate the performance of the EOP. A comparative study was also carried out with a mechanical capillary HPLC pump on the same system. The results demonstrated that the reproducibility of flow rate and the pulsation-free flow property of the EOP are superior to that of mechanical pump in capillary HPLC application. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid and simple analytical method was developed for the simultaneous and quantitative determination and separation of hydrophilic imidazolium ionic liquids (ILs) (1-butyl-3-methylimidazolium chloride, [C(4)mim]Cl; 1-hexyl-3-methylimidazolium chloride, [C(6)mim]Cl; 1-octyl-3-methylimidazolium chloride, [C(8)mim]Cl; 1-allyl-3-methylimidazolium chloride, [Amim]Cl; or 1-allyl-3-methylimidazolium bromide, [Amim]Br) with miscible ethyl acetate and EtOH and their mixtures using reverse phase liquid chromatography coupled with refractive index detection (RPLC-RI). The influence of 60 to 100% (volume percentage) methanol in the mobile phase on the IL systems ([C(4)mim]Cl, [C(6)mim]Cl, [C(8)mim]Cl, [Amim]Br, or [Amim]Cl)-ethyl acetate-EtOH was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of reversed micelles and the roles of extractant and extracted complexes were investigated in the Cyanex923/n-heptane/H2SO4 system. Interfacial tension (gamma), electrical conductivity (kappa), and water content measurements showed that Cyanex923 had a tendency to self-assemble, forming reversed micelles. The changes in electrical conductivity with concentration of H2SO4 in the organic phase (CH2SO4,(0)) exhibited an S-type curve: a correlation was found between the change in electrical conductivity and the water content as a function of CH2SO4,(0),.