218 resultados para Fonction oscillation
Resumo:
We derive the modified rate equations for an Aharonov-Bohm (AB) ring with two transversely coupled quantum dots (QD's) embedded in two arms in the presence of a magnetic field. We find that the interdot coupling between the two QD's can cause a temporal oscillation in electron occupation at the initial stage of the quantum dynamics, while the source-drain current decays monotonically to a stationary value. On the other hand, the interdot coupling equivalently divides the AB ring into two coupled subrings. That also destroys the normal AB oscillations with a period of 2pi, and generates new and complex periodic oscillations with their periods varying in a linear manner as the ratio between two magnetic fluxes (each penetrates one AB subring) increases. Furthermore, the interference between two subrings is also evident from the observation of the perturbed fundamental AB oscillation.
Resumo:
Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.
Resumo:
A Shubnikov-de Haas (SdH) oscillation measurement was performed on highly doped InAlAs/InGaAs metamorphic high-electron-mobility transistors on GaAs substrates at a temperature of 1.4 K. By analyzing the experimental data using fast Fourier transform, the electron densities and mobilities of more than one subband are obtained, and an obvious double-peak structure appears at high magnetic field in the Fourier spectrum. In comparing the results of SdH measurements, Hall measurements, and theoretical calculation, we found that this double-peak structure arises from spin splitting of the first-excited subband (i=1). Very close mobilities of 5859 and 5827 cm(2)/V s are deduced from this double-peak structure. The sum of the carrier concentration of all the subbands in the quantum well is only 3.95x10(12) cm(-2) due to incomplete transfer of the electrons from the Si delta -doped layer to the well. (C) 2001 American Institute of Physics.
Resumo:
A Gunn active layer is used as an X electron probe to detect the X tunnelling current in the GaAs-AlAs heterostructure, from which a new heterostructure intervalley transferred electron (HITE) device is obtained. In the 8 mm band, the highest pulse output power of these diodes is 2.65 W and the highest conversion efficiency is 18%. The dc and rf performance of the HITE devices was simulated by the band mixing resonant tunnelling theory and Monte Carlo transport simulation. The HITE effect has transformed the transit-time dipole-layer mode in the Gunn diode into a relaxation oscillation mode in the HITE device. From the comparison of simulated results to the measured data, the HITE effect is demonstrated straightforwardly.
Resumo:
A quantum well controller (QWC) consisting of a direct-gap/indirect-gap quantum well and a doping interface is proposed to control the dynamic operation of the Gunn active layer. Through the Monte Carlo simulation a new relaxation mode for this new device is found. The oscillation and amplification behavior of the Gunn active layer under the control of the QWC is investigated theoretically and experimentally. All work demonstrates the great control capacity of the QWC and provides a new way to improve the performance of semiconductor devices. A new oscillation diode made of the QWC and a Gunn active layer has been designed and fabricated. In the 8 mm band the highest pulse output power of these diodes is 2.55 W and the highest conversion efficiency is 18%.
Resumo:
Within the one-dimensional tight-binding model;rnd chi-3 approximation, we have calculated four-wave-mixing (FWM) signals for a semiconductor superlattice in the presence of both static and high-frequency electric fields. When the exciton effect is negligible, the time-periodic field dynamically delocalizes the otherwise localized Wannier-Stark states, and accordingly quasienergy band structures are formed, and manifest in the FWM spectra as a series of equally separated continua. The width of each continuum is proportional to the joint width of the valence and conduction minibands and is independent of the Wannier-Stark index. The realistic homogeneous broadening blurs the continua into broad peaks, whose line shapes, far from the Lorentzian, vary with the delay time in the FWM spectra. The swinging range of the peaks is just the quasienergy bandwidth. The dynamical delocalization (DDL) also induces significant FWM signals well beyond the excitation energy window. When the Coulomb interaction is taken into account, the unequal spacing between the excitonic Wannier-Stark levels weakens the DDL effect, and the FWM spectrum is transformed into groups of discrete lines. Strikingly, the groups are evenly spaced by the ac field frequency, reflecting the characteristic of the quasienergy states. The homogeneous broadening again smears out the line structures, leading to the excitonic FWM spectra quite similar to those without the exciton effect. However, all these features predicted by the dynamical theory do not appear in a recent experiment [Phys. Rev. Lett. 79, 301 (1997)], in which, by using the static approximation the observed Wannier-Stark ladder with delay-time-dependent spacing in the FWM spectra is attributed to a temporally periodic dipole field, produced by the Bloch oscillation of electrons in real space. The contradiction between the dynamical theory and the experiments is discussed. In addition, our calculation indicates that the dynamical localization coherently enhances the time-integrated FWM signals. The feasibility of using such a technique to study the dynamical localization phenomena is shown. [S0163-1829(99)10607-6].
Resumo:
The currents of de and ac components and their phase-angle cosines for a superlattice under a direct bias and alternating field are calculated with the balance equations. It is found that the de currents as functions of the direct field show resonance peaks at the fields corresponding to the Bloch frequency equal to n omega. With increasing alternating field intensity the resonance peaks of higher harmonic increase, and simultaneously the first peak caused by the de field decreases. The results are in good agreement with the experimental results, indicating that this resonance can be understood in terms of electron acceleration within the miniband, i.e., it is a bulk superlattice effect, rather than caused by the electric-field localization mechanism (Wannier Stark ladder). The phase-angle cosine for the first harmonic cos phi(1) becomes negative when the Bloch frequency increases to be larger than the frequency of the ac field omega, and it also shows resonance peaks at the resonance frequencies n omega. The negative cos phi(1) may cause the energy transferred to the alternating field, i.e., oscillation of the system.
Resumo:
We use a polarizer to investigate quantum-well infrared absorption, and report experimental results as follows. The intrasubband transition was observed in GaAs/AlxGa1-xAs multiple quantum wells (MQWs) when the incident infrared radiation (IR) is polarized parallel to the MQW plane. According to the selection rule, an intrasubband transition is forbidden. Up to now, most studies have only observed the intersubband transition between two states with opposite parity. However, our experiment shows not only the intersubband transitions, but also the intrasubband transitions. In our study, we also found that for light doping in the well (4x10(18) cm(-3)), the intrasubband transition occurs only in the lowest subband, while for the heavy doping (8x10(18) cm(-3)), such a transition occurs not only in the lowest subband, but also in the first excited one, because of the electron subband filling. Further experimental results show a linear dependence of the intrasubband transition frequency on the root of the well doping density. These data are in good agreement with our numerical results. Thus we strongly suggest that such a transition can be attributed to plasma oscillation. Conversely, when the incident IR is polarized perpendicular to the MQW plane, intersubband-transition-induced signals appear, while the intrasubband-transition-induced spectra disappear for both light and heavy well dopings. A depolarization blueshift was also taken into account to evaluate the intersubband transition spectra at different well dopings. Furthermore, we performed a deep-level transient spectroscopy (DLTS) measurement to determine the subband energies at different well dopings. A good agreement between DLTS, infrared absorption, and numerical calculation was obtained. In our experiment, two important phenomena are noteworthy: (1) The polarized absorbance is one order of magnitude higher than the unpolarized spectra. This puzzling result is well explained in detail. (2) When the IR, polarized perpendicular to the well plane, normally irradiates the 45 degrees-beveled edge of the samples, we only observed intersubband transition spectra. However, the intrasubband transition signals caused by the in-plane electric-field component are significantly absent. The reason is that such in-plane electric-field components can cancel each other out everywhere during the light propagating in the samples. The spectral widths of bound-to-bound and bound-to-continuum transitions were also discussed, and quantitatively compared to the relaxation time tau, which is deduced from the electron mobility. The relaxation times deduced from spectral widths of bound-to-bound and bound-to-continuum transitions are also discussed, and quantitatively compared to the relaxation time deduced from electron mobility. [S0163-1829(98)01912-2].
Resumo:
The magneto-transport properties of a narrow quantum waveguide with lateral multibarrier modulation are investigated theoretically. It is found that the magnetoconductance as a function of Fermi energy or magnetic field exhibits square-wave-like oscillations. In the presence of magnetic field, the edge states are formed near each barrier and the boundaries. Therefore, the number of edge states increases with the number of lateral barriers, leading to the increase of the propagating modes. On the other hand, owing to the tunneling effect a pair of edge states around the barrier region with opposite moving directions may be coupled and formed a circulating localized state, leading to the quenching of the related propagating states. The resulting dispersion relation exhibits oscillation structures superimposed on the bulk Landau levels. These novel conductance characteristics may provide potential applications to the fabrication of new quantum devices.
Resumo:
The quantum-confined Stark effect and the Franz-Keldysh oscillation of a single quantum well (SQW) GaAs/AlxGa1-xAs electrode were studied in non-aqueous hydroquinone + benzoquinone solution with electrolyte electroreflectance spectroscopy. By investigation of the relation of the quantum-confined Stark effect and the Franz-Keldysh oscillation with applied external bias, the interfacial behaviour of an SQW electrode was analysed. (C) 1997 Elsevier Science S.A.
Resumo:
AlGaN/AlN/GaN/InGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) structures with improved buffer isolation have been investigated. The structures were grown by MOCVD on sapphire substrate. AFM result of this structure shows a good surface morphology with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu mx5 mu m. A mobility as high as 1950 cm(2)/Vs with the sheet carrier density of 9.89x10(12) cm(-2) was obtained, which was about 50% higher than other results of similar structures which have been reported. Average sheet resistance of 327 Omega/sq was achieved. The HEMTs device using the materials was fabricated, and a maximum drain current density of 718.5 mA/mm, an extrinsic transconductance of 248 mS/mm, a current gain cutoff frequency of 16 GHz and a maximum frequency of oscillation 35 GHz were achieved.
Resumo:
The guide mode whose frequency locates in the band edge in photonic crystal single line defect waveguide has very low group velocity. So the confinement and gain of electromagnetic field in the band edge are strongly enhanced. Photonic crystal waveguide laser is fabricated and the slow light phenomenon is investigated. The laser is pumped by pulsed pumping light at 980nm whose duty ratio is 0.05%. The active layer in photonic crystal slab is InGaAsP multiple quantum well. Light is transimited by a photonic crystal chirp waveguide in one facet of the laser. Then the output light is coupled to a fiber and the character of laser is analysis by an optical spectrometer. It is found that single mode and multimode happens with different power of pumping light. Meanwhile the plane wave expansion and finite-difference time-domain methods are used to simulate the phenomenon of slow light. And the result of the experiment is compared with the theory which proves the slow light results in lasing oscillation.
Resumo:
Wide transmission dips are observed in the through spectra in microring and racetrack channel drop filters by two-dimensional finite-difference time-domain (FDTD) simulation. The transmission spectra, which reflect the coupling efficiency, are also calculated from the FDTD output as the pulse just travels one circle inside the resonator. The results indicate that the dips are caused by the dispersion of the coupling coefficient between the input waveguide and the resonator. In addition, a near-zero channel drop on resonance and a large channel drop off resonance are observed due to the near zero coupling coefficient and a large coupling coefficient, respectively. If the width of the input waveguide is different from that of the ring resonator, the oscillation of the coupling coefficient can be greatly suppressed.
Resumo:
This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.
Resumo:
We have studied the scattering process of AlGaAs/GaAs two-dimensional electron gas with the nearby embedded GaSb/GaAs type-II quantum dots (QDs) at low temperature. Quantum Hall effect and Shubnikov-de Haas oscillation were performed to measure the electron density n(2D), the transport lifetime tau(t) and the quantum lifetime tau(q) under various biased gate voltage. By comparing measured results of QDs sample with that of reference sample without embedded QDs, mobilities (transport mobility mu(t) and quantum mobility mu(q)) dominated by GaSb QDs scattering were extracted as functions of n(2D). It was found that the ratios of tau(t) to tau(q) were varying within the range of 1-4, implying the scattering mechanism belonging to the sort of short-range interaction. In the framework of Born approximation, a scattering model considering rectangular-shaped potential with constant barrier height was successfully applied to explain the transport experimental data. In addition, an oscillating ratio of tau(t)/tau(q) with the increasing n(2D) was predicted in the model.