140 resultados para Electrochemical Detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wall-jet cell incorporating a carbon fibre array ring/glassy-carbon disk electrode has been constructed, and characterized by the cyclic voltammetry and flow-injection techniques. The ring (composed of several microdisks) and glassy-carbon disk electrode, can be used separately for different purposes, e.g., detection in solution without a supporting electrolyte, collection/shielding detection with dual-electrode and voltammetric/amperometric detection with series dual-electrode. The electrode shows better collection and shielding effects than usual ring-disk electrode in quiescent solution and the series dual-electrode in a thin-layer flow-through cell. The detection limit at the ring electrode is comparable with that at a conventional-size electrode, and has been used in the mobile phase without a supporting electrolyte, proving to be a promising detector for normal-phase liquid chromatography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential-response of a microdisk electrode made with a chloride-doped polypyrrole (PPY) film on a carbon fibre (CF) has been examined. The effect of the polymerization conditions on the response characteristics is discussed. The optimum conditions for preparing the electrode are: cycling potential from +0.8 to +1.0 V in 0.1-0.2M pyrrole (Py) containing 0.1M LiCl, electropolymerization time 15-20 min. The electrode gives a Nernstian response of 56-58 mV/pCl and a detection limit of 3.6 x 10(-5)M chloride. It has the advantages of low resistance, short conditioning time and fast response. It has been used satisfactorily for detection of chloride in serum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fast, sensitive and reliable potentiometric stripping analysis (PSA) is described for the selective detection of the marine pathogenic sulfate-reducing bacterium (SRB). Desulforibrio caledoiensis. The chemical and electrochemical parameters that exert influence on the deposition and stripping of lead ion, such as deposition potential, deposition time and pH value were carefully studied. The concentration of SRB was determined in acetate buffer solution (pH 5.2) under the optimized condition (deposition potential of -1.3 V. deposition time of 250 s, ionic strength of 0.2 mol L-1 and oxidant mercury (II) concentration of 40 mg L-1). A linear relationship between the stripping response and the logarithm of the bacterial concentration was observed in the range of 2.3 x 10 to 2.3 x 10(7) cfu mL(-1). In addition, the potentiometric stripping technique gave a distinct response to the SRB, but had no obvious response to Escherichia coli. The measurement system has a potential for further applications and provides a facile and sample method for detection of pathogenic bacteria. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development of a mini-electrochemical detector for microchip electrophoresis. The small size (3.6 x 5.0 cm(2), W x L) of the detector is compatible with the dimension of the microchip. The use of universal serial bus (USB) ports facilitates installation and use of the detector, miniaturizes the detector, and makes it ideal for lab-on-a-chip applications. A fixed 10 M Omega feedback resistance was chosen to convert current of the working electrode to voltage with second gain of 1, 2, 4, 8, 16, 32, 64 and 128 for small signal detection instead of adopting selectable feedback resistance. Special attention has been paid to the power support circuitry and printed circuit board (PCB) design in order to obtain good performance in such a miniature size. The working electrode potential could be varied over a range of +/-2.5 V with a resolution of 0.01 mV. The detection current ranges from -0.3 x 10(-7) A to 2.5 x 10(-7) A and the noise is lower than 1 pA. The analytical performance of the new system was demonstrated by the detection of epinephrine using an integrated PDMS/glass microchip with detection limit of 2.1 mu M (S/N = 3).