246 resultados para ultra high energy photons and neutrinos
Resumo:
Silica glass samples were implanted with 1.157 GeV Fe-56 and 1.755 GeV Xe-136 ions to fluences range from 1 x 10(11) to 3.8 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E' center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E' center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E' center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (alpha band), 3.2 eV (beta band) and 2.67 eV (gamma band) when excited at 5 eV. The intensities of alpha and gamma bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of beta band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of alpha and gamma bands and electronic energy loss processes determine the bleaching of beta band in heavy ion irradiated silica glass. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mn ions were doped into InAs/GaAs quantum dots samples by high energy. implantation and subsequent annealing. The optical and electric properties of the samples have been studied. The photoluminescence intensity of the samples annealed rapidly is stronger than that of the samples annealed for long time. By studying the relationship between the photoluminescence peaks and the implantation dose, it can be found that the photoluminescence peaks of the quantum dots show a blueshift firstly and then move to low energy with the implantation. dose increasing. The latter change in the photoluminescence peaks is probably attributed to that Mn ions entering the InAs quantum dots, which release the strain of the quantum dots. For the samples implanted by heavy dose (annealed rapidly) and the samples annealed for long time, the resistances versus temperature curves reveal anomalous peaks around 40 K.
Resumo:
The RFQ cooler and buncher RFQ1L is one of the key parts of the being-built super-heavy nuclide research spectrometer. In order to understand the high-voltage breakdown phenomenon, the voltages between electrodes have been measured. In addition, more extensive simulations have been performed for better understanding and optimizing the RFQ1L work points.
Resumo:
In order to assess the safety of high-energy solid propellants, the effects of damage on deflagration-to-detonation transition (DDT) in a nitrate ester plasticized polyether (NEPE) propellant, is investigated. A comparison of DDT in the original and impacted propellants was studied in steel tubes with synchronous optoelectronic triodes and strain gauges. The experimental results indicate that the microstructural damage in the propellant enhances its transition rate from deflagration to detonation and causes its danger increase. It is suggested that the mechanical properties of the propellant should be improved to restrain its damage so that the likelihood of DDT might be reduced.
Resumo:
In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1) to introduce damage into the propellants by means of a large-scale drop-weight apparatus; (2) to observe microstructural variations of the propellant with a scanning electron microscope (SEM) and then to characterize the damage with density measurements; (3) to investigate thermal decomposition; (4) to carry out closed-bomb tests. The NEPE propellant can be considered as a viscoelastic material. The matrices of damaged samples axe severely degraded, but the particles are not. The results of the thermal decomposition and closed-bomb tests show that the microstructural damage in the propellant affects its decomposition and burn rate.
Resumo:
LiFePO4 attracts a lot of attention as cathode materials for the next generation of lithium ion batteries. However, LiFePO4 has a poor rate capability attributed to low electronic conductivity and low density. There is seldom data reported on lithium ion batteries with LiFePO4 as cathode and graphite as anode. According to our experimental results, the capacity fading on cycling is surprisingly negligible at 1664 cycles for the cell type 042040. It delivers a capacity of 1170 mAh for 18650 cell type at 4.5C discharge rate. It is confirmed that lithium ion batteries with LiFePO4 as cathode are suitable for electric vehicle application. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have shown that high energy ion implantation enhanced intermixing (HE-IIEI) technology for quantum well (QW) structures is a powerful technique which can be used to blue shift the band gap energy of a QW structure and therefore decrease its band gap absorption. Room temperature (RT) photoluminescence (PL) and guided-wave transmission measurements have been employed to investigate the amount of blue shift of the band gap energy of an intermixed QW structure and the reduction of band gap absorption, Record large blue shifts in PL peaks of 132 nm for a 4-QW InGaAs/InGaAsP/InP structure have been demonstrated in the intermixed regions of the QW wafers, on whose non-intermixed regions, a shift as small as 5 nm is observed. This feature makes this technology very attractive for selective intermixing in selected areas of an MQW structure. The dramatical reduction in band gap absorption for the InP based MQW structure has been investigated experimentally. It is found that the intensity attenuation for the blue shifted structure is decreased by 242.8 dB/cm for the TE mode and 119 dB/cm for the TM mode with respect to the control samples. Electro-absorption characteristics have also been clearly observed in the intermixed structure. Current-Voltage characteristics were employed to investigate the degradation of the p-n junction in the intermixed region. We have achieved a successful fabrication and operation of Y-junction optical switches (JOS) based on MQW semiconductor optical amplifiers using HE-IIEI technology to fabricate the low loss passive waveguide. (C) 1997 Published by Elsevier Science B.V.
REGROWTH OF MBE-GAAS FILMS ON SI SUBSTRATES BY HIGH-ENERGY ION-IMPLANTATION AND SUBSEQUENT ANNEALING