48 resultados para synchroton-based techniques
Resumo:
除植被冠层的光合作用之外,土壤的呼吸作用是陆地生态系统碳收支中最大的通量。土壤呼吸即使发生较小的变化也能显著地减缓或加剧大气中CO2浓度的增加,从而明显影响到全球气候变化。土壤呼吸速率变化与否以及变化的方向可以反映生态系统对环境变化的敏感程度和响应模式。尽管如此,土壤呼吸仍是一个为人们了解不多的生态系统过程。 草地生态系统是陆地生态系统的一个重要组成部分。针对草地土壤呼吸进行野外实验研究和相应方法论的探讨将对区域乃至全球碳源汇性质的准确估算具有重要的科学意义。然而,近几年来关于草地土壤呼吸的主要研究工作都集中在温带草原和部分热带草原,而针对高寒草甸生态系统土壤呼吸的研究报道还很少。 2008年4月至2009年4月期间,我分别在2008年6、8、10、12月和2009年2月和4月分6次对川西北的典型高寒草甸群落的土壤呼吸进行观测,分析了不同类型高寒草甸群落土壤呼吸的季节变化特征以及环境因子和放牧模式对其影响。主要研究结果如下: 1)该地区高寒草甸生态系统在生长季(6月~8月)土壤呼吸速率较大(6.07~9.30μmolCO2¡m-2¡s-1 ) , 在非生长季( 12 月~ 2 月) 较小( 0.16 ~0.49μmolCO2¡m-2¡s-1 ) 。土壤CO2 年累积最大释放量为3963 ~ 5730gCO2¡m-2¡yr-1,其中,生长季土壤CO2的释放量占年总释放量的85%~90%。非生长季占10%~15%。非生长季所占比例略小于冬季积雪覆盖地区的冬季土壤呼吸占年土壤呼吸量的比例(14%~30%)。温度,尤其地温,是影响该地区高寒草甸生态系统土壤呼吸速率的最主要环境因子。土壤呼吸速率与地上生物量和土壤水分之间没有显著相关性,但是土壤含水量过大会导致土壤呼吸速率下降。 2)在观测期内,草丘区的土壤呼吸显著高于对照区的土壤呼吸,其最大土壤呼吸速率为16.77μmolCO2¡m-2¡s-1,土壤CO2 年累积最大释放量为8145gCO2¡m-2¡yr-1,是对照区的近2 倍。由于草丘在高寒草甸中占有较大的面积比例(近30%),因此,它将对高寒草甸生态系统的碳循环起着重要的作用。 3)放牧模式不仅可以影响高寒草甸群落的土壤CO2 排放,而且还可以改变土壤呼吸的温度敏感性(Q10)。本研究表明,在生长季有长期放牧活动干扰时将会增加土壤向大气中释放二氧化碳的速度,促使土壤碳库中碳的流失。禁牧样地的土壤呼吸速率在刚禁牧时先迅速增大,随着禁牧时间的延长土壤呼吸速率将会下降。此外,与其它放牧模式相比,冬季放牧将高寒草甸群落土壤呼吸速率在生长季达到最大值的时间明显向后推迟。不同放牧模式下高寒草甸群落土壤呼吸的Q10 值大小顺序为:禁牧一年群落>冬季放牧群落>禁牧三年群落>夏季放牧群落>自由放牧群落。 4)基于呼吸室技术的观测方法中,测量前的剪草处理可以明显改变该地区高寒草甸群落的土壤温度和土壤呼吸速率。在生长季,剪草处理将使土壤呼吸速率的瞬时响应增加90%左右。由于剪草处理明显增加了剪草样方白天的土壤温度,而土壤温度与土壤呼吸之间存在着极显著的指数相关关系,因而剪草处理导致土壤呼吸速率迅速增加。因此,在高寒地区基于呼吸室技术观测的土壤呼吸应当进行校正。 综上所述,川西北高寒草甸生态系统土壤呼吸速率在生长季较高,而在非生长季较低。土壤温度是影响该地区土壤呼吸的最主要环境因子。在实验观测期,草丘区土壤呼吸速率显著高于对照区的,是对照区土壤呼吸速率的近2倍。由于测量前的剪草处理可以明显改变待测点的土壤呼吸速率,因此,应对在高寒地区基于呼吸室技术观测的土壤呼吸进行校正。 Soil respiration is the second largest component (less than plant phtotosynthesis) of carbon dioxide flux between terrestrial ecosystems and the atmosphere. A minor change in soil respiration rate can significantly slow down or accelerate the increase of atmospheric CO2 concentration that is closely related to global climatic change. In turn, the change in the flux direction and rate of soil respiration may indicate the elasticity and stability of ecosystems to global changes and human disturbance. However, soil respiration is still an ecosystem process that has been poorly understood. Grassland ecosystem is an important component of the terrestrial ecosystem. Accurately estimating the CO2 flux from soil to atmosphere in situ is the key to evaluating the carbon resource and sink regionally or globally. Despite of extensive studies on the temperate and tropic grasslands, the soil respiration of alpine meadows has not substantially been measured. In the current study, soil respiration was measured for an annual cycle from April, 2008 to April, 2009 for the alpine meadow in northwestern Sichuan Province of China to determine the seasonal variation of soil respiration for the typical plant communities. The results are shown as follows: 1) Large seasonal variation of soil respiration was observed in the alpine meadow. The rate of soil respiration was the greatest (6.07~9.30μmolCO2¡m-2¡s-1) in June and the smallest (0.16 ~ 0.49μmolCO2¡m-2¡s-1) occurred from December to February in the non-growing season. The total emission of soil CO2 was estimated as 3963~5730 gCO2¡m-2¡yr-1, 85%~90% of which was released during the growing season, and 10%~15% during the non-growing season which was slightly less than the ratio of winter and annual CO2 flux from soil. Temperature, particularly the soil temperature, was the major environmental factor regulating the soil respiration. Significant and positive relationships were not found between soil respiration and soil moisture and between soil respiration and plant above-ground biomass, but excessive soil water content would decrease in the rate of soil respiration. 2) The rate of soil respiration in grass hummock communities was up to 16.77μmolCO2¡m-2¡s-1, which was about twice as great as in the controls (communities located in low and even sites). Considering the large proportion (about 30% on average) of hummock area in the meadow, it can be concluded that the hummocks played an important role in the carbon cycling of the study ecosystem. 3) Grazing patterns affected the flux of CO2 emission and the temperature sensitivity of soil respiration (Q10) in the alpine meadow. Grazing during growing season increased the rate of soil respiration. The rate of soil respiration increased significantly immediately after the alpine meadow being fenced, but thereafter decreased. In addition, grazing in winter delayed the peak respiration rate relative to the non-grazing mode. The Q10 value was the largest in the non-grazed area for one year, and next came the area with grazing in winter, followed by the non-grazed area for three years, the area with grazing in summer, and the non-limited grazed area. 4) In the chamber-based techniques, clipping manipulation before each measurement increased the transient rate of soil respiration by about 90% in the summer of the alpine meadow. As increase in soil temperature at daytime in the clipped plots by clipping and the exponential relationship between soil respiration and temperature, clipping manipulation led to increase in the rate of soil respiration. This suggested that a correction should be done for the techniques if employed in alpine and cold regions. In summary, the rate of soil respiration in the alpine meadow was the greatest in June and the smallest occurred from ecember to February in the non-growing season. Soil temperature was the major environmental factor regulating the soil respiration. The rate of soil respiration in grass hummock communities was up to 16.77μmolCO2¡m-2¡s-1, which was about twice as great as in the controls. A correction should be done for the techniques if employed in alpine and cold regions, because of the effect of clipping manipulation on soil temperature and respiration.
Resumo:
From 30 June to 24 September in 2003 ecosystem respiration (Re) in two alpine meadows on the Tibetan Plateau were measured using static chamber- and gas chromatography- (GC) based techniques. Simultaneously, plant removal treatments were set to partition Re into plant autotrophic respiration (Ra) and microbial heterotrophic respiration (Rh). Results indicated that Re had clear diurnal and seasonal variation patterns in both of the meadows. The seasonal variability of Re at both meadow sites was caused mainly by changes in Ra, rather than Rh. Moreover, at the Kobresia humilis meadow site (K_site), Ra and Rh accounted for 54% and 46% of Re, respectively. While at the Potentilla fruticosa scrub meadow (P_site), the counterparts accounted for 61% and 39%, respectively. T test showed that there was significant difference in Re rates between the two meadows (t = 2.387, P = 0.022). However, no significant difference was found in Rh rates, whereas a significant difference was observed in Ra rates between the two meadows. Thus, the difference in Re rate between the two meadows was mainly attributed to plant autotrophic respirations. During the growing season, the two meadows showed relatively low Q(10) values, suggesting that Re, especially Rh was not sensitive to temperature variation in the growing season. Additionally, Re and Rh at the K_site, as well as Rh at the P_site was negatively correlated with soil moisture, indicating that soil moisture would also play an important role in respirations.
Resumo:
Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.
Resumo:
Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.
Resumo:
Current based microscopic defect analysis methods such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) have been further developed in accordance with the need for the defect analysis of highly irradiated (Phi(n) > 10(13) n/cm(2)) high resistivity silicon detectors. The new I-DLTS/TSC system has a temperature range of 8 K less than or equal to T less than or equal to 450 K and a high sensitivity that can detect a defect concentration of less than 10(10)/cm(3) (background noise as low as 10 fA). A new filling method using different wavelength laser illumination has been applied, which is more efficient and suitable than the traditional voltage pulse filling. It has been found that the filling of a defect level depends on such factors as the total concentration of free carriers generated or injected, the penetration length of the laser (laser wavelength), the temperature at which the filling is taking place, as well as the decay time after the filling (but before the measurement). The mechanism of the defect filling can be explained by the competition between trapping and detrapping of defect levels, possible capture cross section temperature dependence, and interaction among various defect levels in terms of charge transferring. Optimum defect filling conditions have been suggested for highly irradiated high resistivity silicon detectors.
Numerical analysis of four-wave-mixing based multichannel wavelength conversion techniques in fibers
Resumo:
We numerically investigate four-wave-mixing (FWM) based multichannel wavelength conversion for amplitude-modulated signals, phase-modulated signals, together with mixed amplitude and phase modulated signals. This paper also discusses the influence of stimulated Brillouin scattering (SBS) effects on high-efficiency FWM-based wavelength conversion applications. Our simulation results show that DPSK signals are more suitable for FWM-based multichannel wavelength conversion because the OOK signals will suffer from the inevitable datapattern-dependent pump depletion. In future applications, when the modulation format is partially upgraded from OOK to DPSK, the influence of OOK signals on the updated DPSK signals must be considered when using multichannel wavelength conversion. This influence becomes severe with the increase of OOK channel number. It can be concluded that DPSK signals are more appropriate for both transmission and multichannel wavelength conversion,especially in long haul and high bit-rate system.
Resumo:
Instrumented indentation tests have been widely adopted for elastic modulus determination. Recently, a number of indentation-based methods for plastic properties characterization have been proposed, and rigorous verification is absolutely necessary for their wide application. In view of the advantages of spherical indentation compared with conical indentation in determining plastic proper-ties, this study mainly concerns verification of spherical indentation methods. Five convenient and simple models were selected for this purpose, and numerical experiments for a wide range of materials are carried out to identify their accuracy and sensitivity characteristics. The verification results show that four of these five methods can give relatively accurate and stable results within a certain material domain, which is defined as their validity range and has been summarized for each method.
Resumo:
On the basis of signed-digit negabinary representation, parallel two-step addition and one-step subtraction can be performed for arbitrary-length negabinary operands.; The arithmetic is realized by signed logic operations and optically implemented by spatial encoding and decoding techniques. The proposed algorithm and optical system are simple, reliable, and practicable, and they have the property of parallel processing of two-dimensional data. This leads to an efficient design for the optical arithmetic and logic unit. (C) 1997 Optical Society of America.
Resumo:
An efficient one-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In this technique, carry propagation is avoided by introducing reference digits to restrict the intermediate carry and sum digits to {1,0} and {0,1}, respectively. The proposed technique requires significantly fewer minterms and simplifies system complexity compared to the reported one-step MSD addition techniques. An incoherent correlator based on an optoelectronic shared content-addressable memory processor is suggested to perform the addition operation. In this technique, only one set of minterms needs to be stored, independent of the operand length. (C) 2002 society or Photo-Optical Instrumentation Engineers.
Resumo:
We theoretically simulate and experimentally demonstrate ultra-large through-port extinctions in silicon-based asymmetrically-coupled add-drop microring resonators (MRs). Through-port responses in an add-drop MR are analyzed by simulations and large extinctions are found when the MR is near-critically coupled. Accurate fabrication techniques are applied in producing a series of 20 mu m-radii add-drop microrings with drop-side gap-widths in slight differences. A through-port extinction of about 42.7 dB is measured in an MR with through-and drop-side gap-width to be respectively 280 nm and 295 nm. The large extinction suggests about a 20.5 dB improvement from the symmetrical add-drop MR of the same size and the through-side gap-width. The experimental results are finally compared with the post-fabrication simulations, which show a gap-width tolerance of > 30 nm for the through-port extinction enhancement.
Resumo:
Microcylinder resonators with multiple ports connected to waveguides are investigated by 2D finite-difference time-domain (FDTD) simulation for realizing microlasers with multiple outputs. For a 10 mu m radius microcylinder with a refractive index of 3.2 and three 2 mu m wide waveguides, confined mode at the wavelength of 1542.3 nm can have a mode Q factor of 6.7 x 10(4) and an output coupling efficiency of 0.76. AlGaInAs/InP microcylinder lasers with a radius of 10 mu m and a 2 mu m wide output waveguide are fabricated by planar processing techniques. Continuous-wave electrically injected operation is realized with a threshold current of 4 mA at room temperature, and the jumps of output power are observed accompanying a lasing mode transformation.
Resumo:
The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America