80 resultados para quantum measurement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum physics and an essential issue in quantum computing. In this work, by employing a unified quantum master equation approach constructed in our recent publications, we study the measurement-induced relaxation and dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. As a result, our theory is applicable to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit relaxation and dephasing are carried out, and important features are highlighted in concern with their possible relevance to future experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to a few unique advantages, the double-dot single electron transistor has been proposed as an alternative detector for charge states. In this work, we present a further study for its signal-to-noise property, based on a full analysis of the setup configuration symmetry. It is found that the effectiveness of the double-dot detector can approach that of an ideal detector, if the symmetric capacitive coupling is taken into account. The quantum measurement efficiency is also analyzed by comparing the measurement time with the measurement-induced dephasing time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Closely related to the quantum information processing in solid states, we study the quantum measurement of single electron state by a mesoscopic charge-sensitive detector, namely the quantum point contact (QPC). We find that the conventional Lindblad-type master equation is not appropriate for describing the underlying measurement dynamics. The treatment developed in this work properly accounts for the energy-exchange between the detector and the measured system, and its role on the detailed-balance relation. A valid description for the QPC measurement dynamics is provided which may have impact on the study of quantum measurement and quantum feedback control in solid states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum point contact (QPC), one of the typical mesoscopic transport devices, has been suggested to be an efficient detector for quantum measurement. In the context of two-state charge qubit, our previous studies showed that the QPC's measurement back-action cannot be described by the conventional Lindblad quantum master equation. In this work, we study the measurement problem of a multistate system, say, an electron in disordered potential, subject to the quantum measurement of the mesoscopic detector QPC. The effect of measurement back-action and the detector's readout current are analyzed, where particular attention is focused on some new features and the underlying physics associated with the measurement-induced delocalization versus the measurement voltages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A realistic measurement setup for a system such system measured by a mesoscopie detector,is theoretically as a charged two-state (qubit) or multi-state quantum studied. To properly describe the measurement-induced back-action,a detailed-balance preserved quantum master equation treatment is developed. The established framework is applicable for arbitrary voltages and temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantum measurement will inevitably cause backaction on the measured system, resulting in the well-known dephasing and relaxation. In this paper, in the context of solid-state qubit measurement by a mesoscopic detector, we show that an alternative backaction known as renormalization is important under some circumstances. This effect is largely overlooked in the theory of quantum measurement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in terms of compact expressions for the transport current and the reduced density matrix of the system. The present work is an extension of Gurvitz's approach for quantum transport and quantum measurement, namely, to finite temperature and arbitrary bias voltage. Our derivation starts from a second-order cumulant expansion of the tunneling Hamiltonian; then follows the conditional average over the electrode reservoir states. As a consequence, in the usual weak-tunneling regime, the established formalism is applicable for a wide range of transport problems. The validity of the formalism and its convenience in application are well illustrated by a number of examples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we first derive a generalized conditional master equation for quantum measurement by a mesoscopic detector, then study the readout characteristics of qubit measurement where a number of remarkable new features are found. The work would, in particular, highlight the qubit spontaneous relaxation effect induced by the measurement itself rather than an external thermal bath.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we consider the continuous weak measurement of a solid-state qubit by single electron transistors (SET). For single-dot SET, we find that in nonlinear response regime the signal-to-noise ratio can violate the universal upper bound imposed quantum mechanically on any linear response detectors. We understand the violation by means of the cross-correlation of the detector currents. For double-dot SET, we discuss its robustness against wider range of temperatures, quantum efficiency, and the relevant open issues unresolved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode gain spectrum is measured by the Fourier series expansion method for InAs/GaAs quantum-dot (QD) lasers with seven stacks of QDs at different injection currents. Gain spectra with distinctive peaks are observed at the short and long wavelengths of about 1210 nm and 1300 nm. For a QD laser with the cavity length of 1060 mu m, the peak gain of the long wavelength first increases slowly or even decreases with the injection current as the peak gain of the short wavelength increases quickly, and finally increases quickly before approaching the saturated values as the injection current further increases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Absolute measurement of detector quantum efficiency using optical parametric down-conversion has been extensively studied for the case of a continuous wave pump. In this paper, we have used the temporally and spatially correlated properties of the down-converted photon pairs generated in a nonlinear crystal pumped by a femtosecond laser pulse to perform an absolute measurement of detector quantum efficiency. The measured detector quantum efficiency is in excellent agreement with the measured value in the conventional way. A lens with a long focal length was adopted for efficiently increasing the intensity of the down-conversion entangled photon source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-voltage measuring system, employing a quartz Pockels cell, is described. The system is capable of a large voltage range, a fast response time (ns), a high SNR, an excellent accuracy, a good linearity, and high reliability. Furthermore, the Pockels cell can be isolated from ground potential. Equally important, the detection system can be isolated from sources of electrical noise present in, for example, fast discharges.