207 resultados para multi-layer transfer-matrix


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Residual stress and its gradient through the thickness are among the most important properties of as-deposited films. Recently, a new mechanism based on a revised Thomas-Fermi-Dirac (TFD) model was proposed for the origin of intrinsic stress in solid film

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bonding of glass wafer to aluminum foils in multi-layer assemblies was made by the common anodic bonding process. The bonding was performed at temperatures in the range 350-450 degrees C and with an applied voltage in the range 400-700 V under a pressure of 0.05 MPa. Residual stress and deformation in samples of two-layer (aluminum/glass) and three-layer (glass/aluminum/glass) were analyzed by nonlinear finite element simulation software MARC. The stress and strain varying with cooling time were obtained. The analyzed results show that deformation of the three-layer sample is significantly smaller than that of the two-layer sample, because of the symmetric structure of the three-layer sample. This has an important advantage in MEMS fabrication. The maximum equivalent stresses locate in the transition layer in both samples, which will become weakness in bonded sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Used in chirped-pulse amplification system and based on multi-layer thin film stack, pulse compressor gratings (PCG) are etched by ion-beam and holographic techniques. Diffraction efficiency and laser-induced damage threshold rely on the structural parameters of gratings. On the other hand, they depend greatly on the design of multi-layer. A theoretic design is given for dielectric multi-layer, which is exposed at 413.1 nm and used at 1053 nm. The influences of coating design on optical characters are described in detail. The analysis shows that a coating stack of H3L (H2L) (boolean AND) 9H0.5L2.01H meets the specifications of PCG well. And there is good agreement of transmission between experimental and the theoretic design. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate mechanisms of laser induced damage thresholds (LIDTs) of multi-layer dielectric gratings (AIDG,). It is found that the laser damage thresholds of MDGs and unstructured dielectric multi-layer coatings (the substrate of MDG) are 3.15J/cm(2) and 9.32 J/cm(2), respectively, at 1064nm (12ns) with the Littrow angle 51.2 degrees and the TEM00 mode. The laser-induced damage mechanism of multi-layer dielectric is presented with the analysis of the following factors: The dominant factor is the pollution on the corrugated surface, which is induced by the complex manufacture process of multi-layer dielectric gratings; another is the electric field distribution along the corrugated surface. The third reason is due to the reduction in stoichiometry of oxide films, resulting from the manufacture process of etching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser induced damage threshold (LIDT) of multi-layer dielectric used in pulse compressor gratings (PCG) was investigated. The sample was prepared by e-beam evaporation (EBE). LIDT was detected following ISO standard 11254-1.2. It was found that LIDTs of normal and 51.2 deg. incidence (transverse electric (TE) mode) were 14.14 and 9.31 J/cm2, respectively. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was pit-concave-plat structure for normal incidence, while it was pit structure for 51.2 deg. incidence with TE mode. The electric field distribution was calculated to illuminate the difference of LIDT between the two incident cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-layer dielectric (MLD) gratings for pulse compressors in high-energy laser systems should provide high diffraction efficiency as well as high laser induced damage thresholds (LIDT). Nonuniform optical near-field distribution is one of the important factors to limit their damage resistant capabilities. Electric field distributions in the gratings and multi-layer film region are analyzed by using Fourier modal method. Optimization of peak electric field in the gratings ridge is performed with a merit function, including both diffraction efficiency and electric field enhancement when the top layer material is HfO2 and SiO2, respectively. A set of optimized gratings parameters is obtained for each structure, which reduce the peak electric field within the gratings ridge to being respective 1.39 and 1.84 times the value of incident light respectively. Finally, we also discuss the effects of gratings refractive index, gratings sidewall angle and incident angle on peak electric field in the gratings ridge. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin-film design used to fabricate multi-layer dielectric (MLD) gratings should provide high transmittance during holography exposure, high reflectance at use wavelength and sufficient manufacturing latitude of the grating design making the MLD grating achieve both high diffraction efficiency and low electric field enhancement. Based on a (HLL)H-9 design comprising of quarter-waves of high-index material and half-waves of low-index material, we obtain an optimum MLD coating meeting these requirements by inserting a matching layer being half a quarter-wave of Al2O3 between the initial design and an optimized HfO2 top layer. The optimized MLD coatings exhibits a low reflectance of 0.017% under photoresist at the exposure angle of 17.8 degrees for 413 nm light and a high reflectance of 99.61% under air at the use angle of 51.2 degrees for 1053 nm light. Numerical calculation of intensity distribution in the photoresist coated on the MLD film during exposure shows that standing-wave patterns are greatly minimized and thus simulation profile of photoresist gratings after development demonstrates smoother shapes with lower roughness. Furthermore, a MLD gratings with grooves etched into the top layer of this MLD coating provides a high diffraction efficiency of 99.5% and a low electric field enhancement ratio of 1.53. This thin-film design shows perfect performances and can be easily fabricated by e-beam evaporation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report comparative luminescence properties of multi-layer InGaN quantum dots grown on C- and R-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). High-density InGaN quantum dots (QDs) are formed on GaN templates by decreasing the growth temperature and increasing the adatom hopping-barrier through surface passivation. Atomic force microscopy (AFM) has been employed to estimate the size and height of these dots. Photoluminescence (PL) spectra recorded from (1120) InGaN QDs/(1102) sapphire show much stronger emission intensity compared to spectra recorded from (0001) InGaN QDs/(0001) sapphire. Due to the absence of strong spontaneous polarization and piezoelectric field, such (1150) InGaN QDs in the active layers would lead to high efficiency light emitting devices. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy and characterized by photoluminescence (PL). For both single- and multi-layer QDs, PL intensity of the first excited state is larger than that of the ground state at 15 K. Conversely, at room temperature (RT), PL intensity of the first excited state is smaller than that of the ground state. This result is explained by the phonon bottleneck effect. To the ground state, the PL intensities of the multi-layer QDs are larger than that of the single-layer QDs at 15 K, while the intensities are smaller than that of the single-layer QDs at RT. This is due to the defects in the multi-layer QD samples acting as the nonradiative recombination centers. The inter-diffusion of Ga and In atoms in the growth process of multi-layer QDs results in the PL blueshift of the ground state and broadening of the full-width at half-maximum (FWHM), which can be avoided by decreasing the spacers' growth temperature. At the spacers' growth temperature of 520degreesC, we have prepared the 5-layer QDs which emit near 1.3 mum with a FWHM of 31.7 meV at RT, and 27.9 meV at 77 K. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A transfer matrix approach is presented for the study of electron conduction in an arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary conditions for wave functions, the transfer matrix at an interface with a discontinuous potential boundary is obtained for the first time. The total transfer matrix is calculated by multiplication of the transfer matrix for each segment of the structure as well as numerical integration of coupled second-order differential equations. The proposed method is applied to the evaluation of the conductance and the electron probability density in several typical cavity structures. The effect of the geometrical features on the electron transmission is discussed in detail. In the numerical calculations, the method is found to be more efficient than most of the other methods in the literature and the results are found to be in excellent agreement with those obtained by the recursive Green's function method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally investigate the shell effect on the stabilization processes following the multi-electron transfer in slow collisions of Arq+-Ar (q = 6-9, It) The relative cross-section ratios of multi-electron transfer and of the subsequent stabilization with respect to single-electron capture are measured meanwhile compared with the theoretical results predicted by the classical over-barrier model. Our result indicates that the multi-electron transfer is dominant when the projectile charge is large and the subsequent stabilization shows a dramatic variation if the projectile L-shell configuration becomes open. It shows that the subsequent stabilization processes of multiply excited scattering ions have a strong dependence on the projectile shell. (C) 2010 Elsevier BV All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

通过传输矩阵法分析了材料介电常数的变化对于单缺陷结构的磁光多层膜隔离器性能的响,并提出了一种多缺陷结构的磁光多层膜结构.同单缺陷结构相比,多缺陷结构的旋转角的频谱响应带宽有很大增加,对于材料介电常数变化的宽容性得到了一个数量级的提高.同时这种多缺陷的结构对于膜层厚度的变化和入射角度也有很好的宽容性.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microsquare resonators laterally confined by SiO2/Au/air multilayer structure are investigated by light ray method with reflection phase-shift of the multiple layers and two-dimensional (2-D) finite-difference time-domain (FDTD) technique. The reflectivity and phase shift of the mode light ray on the sides of the square resonator with the semiconductor/SiO2/Au/air multilayer structure are calculated for TE and TM modes by transfer matrix method. Based on the reflection phase shift and the reflectivity, the mode wavelength and factor are calculated by the resonant condition and the mirror loss, which are in agreement well with that obtained by the FDTD simulation. We find that the mode factor increases greatly with the increase of the SiO2 layer thickness, especially as d < 0.3 mu m. For the square resonator with side length 2 mu m and refractive index 3.2, anticrossing mode couplings are found for confined TE modes at wavelength about 1.6 mu m at d = 0.11 mu m, and confined TM modes at d = 0.71 mu m, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water-heat transfer process between land and atmosphere in Haibei alpine meadow area has been systematically observed. A multi-layer coupling model for land-atmosphere interaction was presented with special attention paid to the moisture transfer in leaf stomata under unsaturated condition. A profound investigation on the physical process of turbulent transfer inside the vegetation has been performed with a revised formula of water absorption for root system. The present model facilitates the study of vertically distributed physical variables in detail. Numerical simulation was conducted according to the transfer process of Kinesia humility meadow in the area of Haibei Alpine Meadow Ecosystem Station, CAS. The calculated results agree well with observation.