54 resultados para carbohydrate metabolism
Resumo:
Growth, nitrogen and carbohydrate metabolism in relation to eutrophication were studied for a submerged plant Potamogeton maackianus, a species common in East Asian shallow lakes. The plants were grown in six NH4+-N concentrations (0.05, 0.50, 1.00, 3.50, 5.00 and 10.00 mg/L) for six days. NH4+-N levels in excess of 0.50 mg/L inhibited the plant growth. The relationships between external NH4+-N availability and total nitrogen (TN), protein-N, free amino acid-N (FAA-N) and NH4+-N in plant tissues, respectively, conformed to a logarithmic model suggesting that a feedback inhibition mechanism may exist for ammonium uptake. The response of starch to NH4+-N was fitted with a negative, logarithmic curve. Detailed analysis revealed that the influx NH4+-N had been efficiently incorporated into organic-N and eventually stored as protein at the expense of starch accumulation. These data suggest that this species may be able to tolerate high levels of ammonium when dissolved oxygen is sufficient.
Resumo:
The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCl, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars, water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCl. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmotic equilibrium between the intra- and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.
Resumo:
UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.
Resumo:
Microcoleus vaginatus isolated from a desert algal crust of Shapotou was cultured in BG-11 medium containing 0.2mol l(-1) NaCl or 0.2mol l(-1) NaCl plus 100mg l(-1) sucrose, extracellular polymeric substances (EPS) or hot water-soluble polysaccharides (HWP), respectively. Photosynthetic oxygen evolution rates, photosystem 11 activity (Fv/Fm) and dark respiration of NaCl-stressed cells were enhanced significantly by the added sucrose or EPS under salt stress conditions (0.2mol l(-1) NaCl). Compared with cells treated with salt alone, sodium contents in cells reduced significantly; the content of cellular total carbohydrate did not change, and intracellular sucrose, water-soluble sugar increased significantly following the addition of exogenous carbohydrates. Sucrose synthase (SS) activity of NaCl-stressed cells increased following the addition of sucrose, and sucrose phosphate synthase (SPS) activity of NaCl-stressed cells increased following the addition of exogenous sucrose, EPS or HWP compared with cells stressed with NaCl only. The results suggested that the extruded EPS might be re-absorbed by cells of M. vaginatus as carbon source, they could increase salt tolerance of M. vaginatus through the changes of carbohydrate metabolism and the selective uptake of sodium ions. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+-N concentration of 1 mgL(-1) in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus; L The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+-N concentration of 1 mg L-1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L-1 NH4+-N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity. active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ Stress and shading, NH4+ is scavenged by FAA synthesis. (c) 2009 Published by Elsevier B.V.
Resumo:
In order to examine how carbon and nitrogen status of a macrophyte may affect its total phenolics (TP) production, the contents of free amino acids (FAA), soluble carbohydrate (SC) and TP were examined in leaves of seven submersed, four floating-leaved, and four emergent macrophytes. The floating-leaved and emergent macrophytes had much higher contents of SC and TP than the submersed macrophytes. The contents of FAA were not significantly different among the submersed, floating-leaved, and emergent macrophytes. Correlations among the contents of FAA, SC, and TP indicated that the production of TP was more dependent on the SC content than on the FAA content.
Resumo:
In previous growth experiments with carnivorous southern catfish (Silurus meridionalis), the non-fecal energy lose was positively related to dietary. carbohydrate level. To test whether metabolic energy expenditure accounts for such energy loss, an experiment was performed with southern catfish juveniles (33.2-71.9 g) to study the effect of dietary carbohydrate level on fasting metabolic rate and specific dynamic action (SDA) at 27.5 degreesC. The fasting metabolic rate in this catfish was increased with dietary carbohydrate level, and the specific dynamic action (SDA) coefficient (energy expended on SDA as percent of assimilated energy) was not affected by dietary carbohydrate level. The results suggest that in southern catfish, carbohydrate overfeeding increases metabolic rate to oxidize unwanted assimilated carbohydrate. A discussion on the poor capacity of intermediate metabolism for adapting dietary carbohydrate in carnivorous fish and its possible relationship with facultative component of SDA was also documented in this paper. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Selectin/ligand interactions initiate the multistep adhesion and signaling cascades in the recruitment of leukocytes from circulation to inflamed tissues and may also play a role in tumor metastasis. Kinetic properties of these interactions are essential determinants governing blood-borne cells' tethering to and rolling on the vessel wall. Extending our recently developed micropipette method, we have measured the kinetic rates of E-selectin/ligand interactions. Red cells coated with an E-selectin construct were allowed to bind HL-60 or Colo-205 cells bearing carbohydrate ligands. Specific adhesions were observed to occur at isolated points, the frequency of which followed a Poisson distribution. These point attachments were formed at the same rate with both the HL-60 and Colo-205 cells (0.14 +/- 0.04 and 0.13 +/- 0.03 mum(2) s(-1) per unit density of E-selectin, respectively) but dissociated from the former at a rate twice as fast as did from the latter (0.92 +/- 0.23 and 0.44 +/- 0.10 s(-1), respectively). The reverse rates agree well with those measured by the flow chamber. The forward rates are orders of magnitude higher than those of Fc gamma receptors interacting with IgG measured under similar conditions, consistent with the rapid kinetics requirement for the function of E-selectin/ligand binding, which is to capture leukocytes on endothelial surfaces from flow.