17 resultados para Simon, Magus, 1st cent.
Resumo:
分析了边坡工程地质条件和地质成因机制;根据现场调查数据建立了滑坡地质剖面,反演了滑坡发生时滑动面的抗剪强度参数;分析了原坡形及降雨所引起孔隙水压力对其稳定性的影响,并以反演获得的强度参数结合类似边坡岩体结构面强度试验统计结果,对原边坡进行了可靠度分析,获得了原边坡的潜在破坏概率,从而又在定量角度上获得了滑坡发生的原因。
Resumo:
With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Good agreements of the calculated excitation energies and fundamental energy gaps with the experimental band structures were achieved. We obtained the calculated fundamental gaps of Si and GaAs to be 1.22 and 1.42 eV in comparison to the experimental values of 1.17 and 1.52 eV, respectively. Ab initio pseudopotential method has been used to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies.
Resumo:
Longitudinal zone boundary X phonon frequencies have been calculated by a first principles pseudopotential method for III-V zincblende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. The phonon frequencies have been evaluated from total energy calculations in the frozen phonon approximation. The calculated phonon frequencies agree very well with the experimental values.
Resumo:
We have applied the Green-function method in the GW approximation to calculate quasiparticle energies for the semiconductors GaP and GaAs. Good agreement between the calculated excitation energies and the experimental results was achieved. We obtained calculated direct band gaps of GaP and GaAs of 2.93 and 1.42 eV, respectively, in comparison with the experimental values of 2.90 and 1.52 eV, respectively. An ab initio pseudopotential method has been used to generate basis wave functions and charge densities for calculating the dielectric matrix elements and self-enegies. To evaluate the dynamical effects of the screened interaction, the generalized-plasma-pole model has been utilized to extend the dielectric matrix elements from static results to finite frequencies. We presen the calculated quasiparticle energies at various high-symmetry points of the Brillouin zone and compare them with the experimental results and other calculations.
Resumo:
We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.
Resumo:
To evaluate the dynamical effects of the screened interaction in the calculations of quasiparticle energies in many-electron systems a two-delta-function generalized plasma pole model (GPP) is introduced to simulate the dynamical dielectric function. The usual single delta-function GPP model has the drawback of over simplifications and for the crystals without the center of symmetry is inappropriate to describe the finite frequency behavior for dielectric function matrices. The discrete frequency summation method requires too much computation to achieve converged results since ab initio calculations of dielectric function matrices are to be carried out for many different frequencies. The two-delta GPP model is an optimization of the two approaches. We analyze the two-delta GPP model and propose a method to determine from the first principle calculations the amplitudes and effective frequencies of these delta-functions. Analytical solutions are found for the second order equations for the parameter matrices entering the model. This enables realistic applications of the method to the first principle quasiparticle calculations and makes the calculations truly adjustable parameter free.
Resumo:
采用氮氧共注入方法制备了新型的SIMON(separation by implanted oxygen and nitrogen)SOI材料.采用不同的制备方法分别制作出样品并进行了结构测试和分析,发现SIMON材料的结构和质量对注入条件和退火工艺非常敏感.并对各种氮氧复合注入技术做了分析和比较,发现氮氧分次注入可以得到更好的结构和性能.
Resumo:
采用氧氮共注的方法制备了氮氧共注隔离 SOI (SIMON) 圆片,对制备的样品进行了二次离 子质谱和透射电镜分析,并对埋层结构与抗辐射性能的机理进行了分析.结果表明,注氮剂量较低 时埋层质量较好.机理分析结果表明,圆片的抗辐照性能与埋层质量之间存在很密切的关系,埋层 的绝缘性能是影响器件抗辐射效应的关键因素.
Resumo:
The analytical expressions of quasi-first and second order homogeneous catalytic reactions with different diffusion coefficients at ultramicrodisk electrodes under steady state conditions are obtained by using the reaction layer concept. The method of treatment is simple and its physical meaning is clear. The relationship between the diffusion layer, reaction layer, the electrode dimension and the kinetic rate constant at an ultramicroelectrode is discussed and the factor effect on the reaction order is described. The order of a catalytic reaction at an ultramicroelectrode under steady state conditions is related not only to C(Z)*/C(O)* but also to the kinetic rate constant and the dimension of the ultramicroelectrode; thus the order of reaction can be controlled by the dimension of the ultramicroelectrode. The steady state voltammetry of the ultramicroelectrode is one of the most simple methods available to study the kinetics of fast catalytic reactions.