95 resultados para PID tuning
Resumo:
以模糊推理和遗传算法为基础,提出了一种新的具有不完全微分的最优PID控制器的设计方法,该控制器由离线和在线两部分组成,在离线部分,以系统响应的超调量、上升时间以及调整时间为性能指标,利用遗传算法搜索出一组最优的PID参数Kp^*、Ti^*和Td^*,作为在线部分调整的初始值,在在线部分,一个专用的PID参数优化程序以离线部分获得Kp^*、Ti^*和Td^*为基础,根据系统当前的误差e和误差变化率e^.,通过一个模糊推理系统在线调整系统瞬态响应的PID参数,以确保系统的响应具有最优的动态和稳态性能.该控制器已被用来控制由作者设计的智能仿生人工腿中的执行电机.计算机仿真结果表明,该控制器具有良好的控制性能和鲁棒性能。
Resumo:
提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法,该控制器由离线和在线2部分组成,在离线部分,以系统响应的超调量、上升时间及调速时间为性能指标,利用遗传算法搜索出一组最优的PID参数Kp^*,Ti^*及Td^*,为在线部分调节的初始值,在在线部分,采用一个专用的PID参数优化程序,以离线部分获得的Kp^*,Ti^*及Td^*为基础,根据系统当前的误差e和误差变化率·↑e,通过模糊推理在线调整系统瞬态响应的PID参数,以确保系统的响应具有最优的动态和稳态性能,计算机仿真结果表明,与传统的PID控制器相比,这种最优PID控制器具有良好的控制性能和鲁棒性能,可用于控制不同的对象和过程。
Resumo:
针对EMS型磁悬浮列车悬浮系统的非线性、迟滞性及模型不确定的特点,本文采用了模糊自适应整定PID控制技术来满足其对动态和静态性能的要求。仿真结果表明模糊自适应整定PID控制器学习精度高、收敛速度快、在系统同时存在磁悬浮系统参数的变化和负载扰动时.具有较强的鲁棒性和抗干扰能力。
Resumo:
Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical one. In this paper, the Dugdale Barenblatt model has been used to study the conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in fibrillar structures. Different configurations in an array of fibres are considered, such as line array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend significantly on the fibre separation, the interface interacting energy, the effective range of cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will enhance the pull-off force of the fibrillar structures. This study may suggest possible methods to design strong adhesion devices for engineering applications.
Resumo:
在水洞试验中 ,通过水泵及收缩段的形状控制水洞的运行过程 ,以保证水洞的稳定运行 ,并保证所进行的各种试验的质量。PID调节是最常见的一种。文章给出了一种基于人工神经网络实现自学习PID控制方法。利用该方法可以较好地实现水洞的控制
Resumo:
We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.
Resumo:
Temperature and stress tunabilities of long-period Bragg gratings imprinted in Panda fiber are presented in this letter. It is shown that the temperature and strain response of the resonance peaks for fast and slow axes are different not only in their magnitudes but also in the signs of the slope. Furthermore, the characteristics for different order modes are different both in magnitudes and signs. The complicated phenomena are discussed by using a simplified model.
Resumo:
The zirconia-titania-ORMOSIL waveguide thin films with considerable optical quality were prepared by the sol-gel process. The refractive index (n) and the extinction coefficient (k) were determined by a scanning ellipsometer. Wavelength tunable output of distributed feedback waveguide lasing was demonstrated in Rhodamine 6G doped ZrO2 TiO2-ORMOSIL thin films by varying the temperature, and about 5.5 nm wavelength tuning range was achieved around the emission wavelength of 599 nm. The thermal-optic coefficient (dn/dT) of the active ZrO2-TiO2-ORMOSIL films was deduced. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The doped Eu3+ ions can be partly reduced to Eu2+ in a series of MO-B2O3: Eu (M=Ba, Sr, Ca) glasses synthesized in air atmosphere, but not in the 12CaO-7Al(2)O(3): Eu glass. The different redox-behavior of Eu ions in these two glass systems is attributed to the different host optical basicity. It is found that a lower valence state of Eu2+ is more favorable in acidic glasses, which have lower optical basicities. A notion of the critical value of optical basicity is introduced empirically, which can be used as a guide for the selection of glass composition suitable to incorporate Eu2+ for luminescence. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
介绍了电子束蒸发镀膜速率控制的基本原理和方法,选取实际生产中大量使用且蒸发特性较难控制的SiO_2和HfO_2,对两者的电子束蒸发速率控制分别进行了实验研究。采用比例积分微分(PID)闭环反馈控制,通过Ziegler-Nichols工程经验公式进行原始参量整定,并在实验的基础上对控制器的原始参量进行调整以及对积分作用和微分作用进行分区处理,速率控制的实验结果表明,采用该参量整定方法并结合工艺流程的改进,能获得良好的速率控制。针对速率控制中存在的难点问题进行了分析,并提出改进措施:将速率控制和电子枪扫描控制相结合能进一步改善速率控制。
Resumo:
By using photoluminescence (PL) and time-resolved PL spectra, the optical properties of single InAs quantum dot (QD) embedded in the p-1-n structure have been studied under an applied electric field With the increasing of electric field, the exciton lifetime increases due to the Stark effect. We noticed that the decrease or quenching of PL intensity with increasing the electric field is mainly due to the decrease of the carriers captured by QD.
Resumo:
The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [1 (1) over bar0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.
Resumo:
We investigate theoretically the magnetic levels and optical properties of zigzag- and armchair-edged hexagonal graphene quantum dots (GQDs) utilizing the tight-binding method. A bound edge state at zero energy appears for the zigzag GQDs in the absence of a magnetic field. The magnetic levels of GQDs exhibit a Hofstadter-butterfly spectrum and approach the Landau levels of two-dimensional graphene as the magnetic field increases. The optical properties are tuned by the size, the type of the edge, and the external magnetic field.
Resumo:
We investigate theoretically the electron-hole pair states in CdTe quantum dot (QD) containing a single Mn2+ ion by the magneto-optical spectrum tuned by the electric field. It is shown that the electric field does not only tune the spin splitting via the sp-d exchange interaction but also affect significantly the anticrossing behavior in the photoluminescence spectrum. This anticrossing is caused by the s-d exchange interaction and/or the hole mixing effect, which depends sensitively on the shape of the QD. (C) 2008 American Institute of Physics.
Resumo:
We investigate theoretically the charge and spin transport in quantum wires grown along different crystallographic planes in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that changing the crystallographic planes leads to a variation of the anisotropy of the conductance due to a different interplay between the RSOI and DSOI, since the DSOI is induced by bulk inversion asymmetry, which is determined by crystallographic plane. This interplay depends sensitively on the crystallographic planes, and consequently leads to the anisotropic charge and spin transport in quantum wires embedded in different crystallographic planes.