31 resultados para Lens Tuero, Jesús Angel
Resumo:
A previously suggested birefringence-customized modular optical interconnect technique is extended for lens-free relay operation. Various lens-free relay imaging models are developed. We claim that the lens-free relay system is important in simplifying an optical interconnect system whenever the imaging conditions permit. To verify the validity of various proposed concepts, we experimentally implemented some 8 x 8 optical permutation modules. High-power efficiency and low channel cross talk were experimentally observed. In general, the larger the channel spacing, the less the cross talk. A quantitative cross-talk measurement of the lens-free relay system shows that, for a fixed channel width of 0.5 mm and channel spacings of 0.5, 1, and 2 mm, a less than -20-dB cross-talk performance can be guaranteed for lens-free relay distances of 40, 280, and 430 mm, respectively. (C) 1998 Optical Society of America.
Resumo:
A scheme using a lens array and the technique of spectral dispersion is presented to improve target illumination uniformity in laser produced plasmas. Detailed two-dimensional simulation shows that a quasi-near-field target pattern, of steeper edges and without side lobes, is achieved with a lens array, while interference stripes inside the pattern are smoothed out by the use of the spectral dispersion technique. Moving the target slightly from the exact focal plane of the principal focusing lens can eliminate middle-scale-length intensity fluctuation further. Numerical results indicate that a well-irradiated laser spot with small nonuniformity and great energy efficiency can be obtained in this scheme. (c) 2007 American Institute of Physics.
Resumo:
A scheme of combining technology of lens array (LA) and smoothing by spectral dispersion (SSD) is introduced to improve the irradiation uniformity in laser fusion based on the earlier works on LA. The feasibility of the scheme is also analyzed by numerical simulation. It shows that a focal pattern with flat-top and sharp-edge profile could be obtained, and the irradiation nonuniformity can fall down from 14% with only LA to 3% with both SSD and LA. And this smoothing scheme is depended less on the incidence comparing to other smoothing methods. The preliminary experiment has demonstrated its effectiveness. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A lens array composed of edge-softened elements is used to improve on-target irradiation uniformity in the Shenguang II Laser Facility, with which a Fresnel pattern of suppressed diffraction peaks is obtained. Additional uniformity can be reached by reducing short-wavelength interference speckles inside the pattern when the technique of smoothing by spectral dispersion is also used. Two-dimensional performance of irradiation is simulated and the results indicate that a pattern of steeper edges and a flat top can be achieved with this joint technique. (c) 2007 Optical Society of America.
Resumo:
Based on the interferential theory, we deduce a new type of analytic expression suitable for describing the evolutions of the optical bottle beam generated from the axicon-lens optical system illuminated by the Gaussian beam for the first time. The theory does not use much approximation in the process of mathematical analysis and can better illustrate the optical bottle beam evolutions at any positions. With the derived expression, the three-dimensional (3D) longitudinal and transverse intensity profiles of the optical bottle beam are simulated numerically. The numerical calculations have been confirmed by the experimental results.
Resumo:
Using the finite-difference-time-domain method, the near-field optical distribution and properties of Sb thin film thermal lens are calculated and simulated. The results show as follows. Within the near-field distance to the output plane of thermal lens, the spot size is approximately 100 nm, and its intensity is greatly enhanced, which is higher than that of incident light. The spot shape gradually changes from ellipse to round at the distance of more than 12 nm to the output plane. The above-simulated results are further demonstrated by the static optical recording experiment. (C) 2005 American Institute of Physics.
Resumo:
We quantitatively analysed the factors contributing to the optical transmission enhancement of a sub-wavelength Sb thin film lens, using the finite-difference time-domain (FDTD) method. The results show that the transmission enhancement of the dielectric with a Gaussian distributed refractive index loaded in a sub-wavelength circular hole is not only due to the high refractive index dielectric, but also due to the specific distributions of refractive index. It is the first study about the effects of the refractive index distribution on the transmission of a sub-wavelength aperture. This kind of lens has practical applications in the very small aperture lasers and for near-field optical storage and lithography.
Resumo:
Graded-index (GRIN) fiber lens arrays are fabricated from commercial GRIN fibers to collimate a high-power laser diode array. The beam divergence angles are reduced to 4.2 and 14.7 mrad in the fast and slow axes, respectively. The influences of smile and fluctuation in fiber length are discussed. Using an aspherical focal lens system, about 74% power can be launched into a fiber with a numerical aperture (NA) of 0.22 and a core diameter of 400 mu m. (c) 2008 Society of Photo-Optical Instrumentation Engineers.