174 resultados para Immersion calorimetry
Resumo:
Immersion lithography has been considered as the mainstream technology to extend the feasibility of optical lithography to further technology nodes. Using proper polarized illumination in an immersion lithographic tool is a powerful means to enhance the image quality and process capability for high numerical aperture (NA) imaging. In this paper, the impact of polarized illumination on high NA imaging in ArF immersion lithography for 45 nm dense lines and semi-dense lines is studied by PROLITH simulation. The normalized image log slope (NILS) and exposure defocus (ED) window are simulated under various polarized illumination modes, and the impact of polarized illumination on image quality and process latitude is analyzed. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Combined with the national standard biomonitoring method (polyurethane foam units method), calorimetry was applied to study the metabolic activities of PFU microbial communities in fresh water to determine the effects of anthropotgenic stresses on the activity of the microbial community. Comparisons were made at four sampling stations with different eutrophic status in Lake Donghu. Water quality variables, species number of protozoa, abundances of microorganisms, biomass, heterotrophy indexes and diversity indexes are reported. The heat rate-time curves of the native and concentrated PFU microbial communities were determined at 28 degrees C. Growth rate, measured maximum power output and total heat were calculated from the heat rate-time curves. The values of metabolic variables are higher at the more eutrophic stations, which suggests that organic pollution increases the activity of PFU microbial communities. The metabolic variables are in good agreement with chemical and biotic variables. And calorimetry will be useful for biomonitoring of the PFU microbial community. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
An analysis of the enhancement of light transmission through a sub-wavelength aperture by oil- or solid-immersion is presented in this letter. An output power enhancement phenomenon related to the oil-immersion or solid-immersion mechanism is realized experimentally and reported for a very small aperture laser, which is an agreement with simulation analysis. This phenomenon could be useful for future optical data storage, microscopy and lithography.
Resumo:
Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of C-p,C-m (J K-1 mol(-1)) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K less than or equal to T less than or equal to 333.297 K, C-p,C-m = 144.27 + 77.046X + 3.5171X(2) + 10.925X(3) + 11.224X(4), where X = (T - 206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K less than or equal to T less than or equal to 378.785 K, C-p,C-m = 325.79 + 8.9696X - 1.6073X(2) - 1.5145 X-3, where X = (T - 366.095)/12.690. A fusion transition at T = 348.02 K was found from the C-p-T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol(-1) and 76.58 J mol(-1) K-1, respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (H-T - H-298.15) and (S-T - S-298.15), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3 +/- 1.4 kJ mol(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Immersion in various media has different effect on the properties of dental composites, such as sorption, solubility, elution of unreacted monomers, flexural strength, and flexural elastic modulus. In the present work, the effect of immersion in various media and the relationship between the variation of these properties and the components of dental composite were investigated.
Resumo:
An industrial waterproof reagent [(potassium methyl siliconate) (PMS)] was used for fabricating a superhydrophobic surface on a cellulose-based material (cotton fabric or paper) through a solution-immersion method. This method involves a hydrogen bond assembly and a polycondensation process. The silanol, which was formed by a reaction of PMS aqueous solution with CO2, Was assembled on the cellulose molecule surface via hydrogen bond interactions. The polymethylsilsesquioxane coatings were prepared by a polycondensation reaction of the hydroxyl between cellulose and silatiol. The superhydrophobic cellulose materials were characterized by FTIR spectroscopy, thermogravimetry, and surface analysis (XPS, FESEM, AFM, and contact angle measurements).
Resumo:
The melting behavior of poly(methyl methacrylate)-grafted nascent polyethylene reactor powder by plasma irradiation was studied by differential scanning calorimetry (DSC). The grafting yield ranged hom 11 to 190%. Grafting was found to lower both melting point and heat of fusion during the first run of DSC determination. The heat of fusion was used to calculate the apparent grafting yield of the samples. There was little strain induced by plasma-irradiated grafting on the surface of the polyethylene crystals. A method to determine the covalent grafting yield in the graft copolymer systems was developed. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The aim of this work is to describe the most recent achievements in the field of the physical chemistry of mixing. The systems studied have been classified according to the amount of thermic effect due to the blending and its interpretation. When polystyrene (PS) and poly(alpha-methylstyrene) (P alpha MS) are blended, the interaction is weak and Delta(mix)H is close to zero. The presence of polar atoms and/or groups increases the stability of the blend and, therefore, Delta(mix)H becomes more negative. Poly(ethylene oxide) (PEO), poly(methyl acrylate) (PMA), poly(methyl methacrylate) (PMMA) and poly(vinylacetate) (PVAc), when mixed to form binary systems, show large differences from their properties when pure. If hydrogen bonding takes place, the interactions are readily detected and a large effect is calorimetrically determined. Cellulose diacetate (CDA) and poly(vinylpyrrolidone) (PVP) have been studied as an example of a strongly interacting system.
Resumo:
The stability constants and thermodynamic functions for complexes of rare earth with L-phenylalanine have been determined by potentiometry and calorimetry at 25-degrees-C and ionic strength of 0.15mol.dm-3(NaCl). Stability of the complexes shows the "Tetrad effect". The entropy change makes a predominant contribution to the stability of these complexes. The ligand is coordinated to rare earth ions through its -CO2- and -NH2 group, and dehydration of ions plays an important role in coordination reaction.
Resumo:
The crystallinity of two series of uniform oligo(oxyethylene) mono-n-alkyl ethers has been investigated: alpha-alkyl,omega-hydroxyoligo(oxyethylene)s, H(CH2)n(OCH2CH2)mOH, and alpha-alkyl,omega-methoxyoligo(oxyethylene)s, H(CH2)n(OCH2CH2)mOCH3. The hydroxy-ended oligomers formed bilayer crystals, and the methoxy-ended oligomers formed monolayer crystals. The helical oxyethylene blocks were oriented normal to the layer-crystal end-group plane, whilst the trans-planar alkyl blocks were generally tilted at an angle delta = 60-degrees. The melting temperature and enthalpy of fusion were higher for hydroxy-ended oligomers than for corresponding methoxy-ended oligomers.
Resumo:
The chloride extraction rules of iron artifacts were studied by immersion methods. Different chloride extraction results between the alkaline solution and a washing solution were obtained. The microstructure and the anti-corrosion performance of the samples before and after treatment, were, respectively studied by the scanning electron microscope (SEM) and the potentiodynamic scanning method. The results indicated that Cl- removed according to the diffusion law. The microstructure of the samples transformed after treatment. The rusts became more compact, and the porosity also increased. The chloride extraction effect in the washing solution was better than that in the NaOH solution.