150 resultados para Cathodic cage, duplex surface, plasma nitriding, TiN thin films,martensitic stainless steel
Resumo:
NiOx thin films were deposited by reactive DC-magnetron sputtering from a nickel metal target in Ar + O-2 with the relative O-2 content of 5%. Thermal annealing effects on optical properties and surface morphology of NiOx, films were investigated by X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscope and optical measurement. The results showed that the changes in optical properties and surface morphology depended on the temperature. The surface morphology of the films changed obviously as the annealing temperature increased due to the reaction NiOx -> NiO + O-2 releasing O-2. The surface morphology change was responsible for the variation of the optical properties of the films. The optical contrast between the as-deposited films and 400 degrees C annealed films was about 52%. In addition, the relationship of the optical energy band gap with the variation of annealing temperature was studied. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The dynamics of spontaneous emission from GaAs slabs with photonic crystals etched into them are investigated both theoretically and experimentally. It is found that the intensity of spontaneous emission decreases significantly and that photonic crystals significantly shorten the lifetime of emission. The mechanics of enhancement and the reduction of emission from photonic crystals are analyzed by considering the surface recombination of GaAs. The measured and calculated lifetimes agree at a surface recombination velocity of 1.88x10(5) cm/s.
Resumo:
The structural evolution of a single-layer latex film during annealing was studied via grazing incidence ultrasmall-angle X-ray scattering (GIUSAXS) and atomic force microscopy (AFM). The latex particles were composed of a low-T-g (-54 degrees C) core (n-butylacrylate, 30 wt %) and a high-T-g (41 degrees C) shell (t-butylacrylate, 70 wt %) and had an overall diameter of about 500 nm. GIUSAXS data indicate that the q(y) scan at q(z) = 0.27 nm(-1) (out-of-plane scan) contains information about both the structure factor and the form factor. The GIUSAXS data on latex films annealed at various temperatures ranging from room temperature to 140 degrees C indicate that the structure of the latex thin film beneath the surface changed significantly. The evolution of the out-of-plane scan plot reveals the surface reconstruction of the film. Furthermore, we also followed the time-dependent behavior of structural evolution when the latex film was annealed at a relatively low temperature (60 degrees C) where restructuring within the film can be followed that cannot be detected by AFM, which detects only surface morphology.
Resumo:
Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.
Resumo:
The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
ZrO2 thin films were prepared on BK7 glass substrates by electron beam evaporation deposition method. The influence of deposition rate varying from 1.2 to 6.3 nm s(-1) on surface morphology and other properties of ZrO2 films were examined. With increasing deposition rate, the surface defect density increased. The decrease in half width at full maximum in X-ray diffraction pattern with deposition rate indicates an increase in crystal dimension with increasing deposition rate. Electron beam deposited ZrO2 films are known to be inhomogeneous. From the change of the peak transmittance value, it can be deduced that the inhomogeneity of ZrO2 films strengthened gradually with increasing deposition rate. The type of surface defects changed from nodules to craters when the deposition rate was high enough.
Resumo:
It is demonstrated with powerful evidence that the extraordinary transmission of a metallic grating is undoubtedly due to the excitation of standing surface plasma waves in the Fabry-Perot like resonator. This is the first time that the strong standing waves set up in the groove of a sub-wavelength double-layer grating (SWDG) for the surface plasma waves have been reported. Moreover, about 90% transmission is gained with an SWDG, more easily fabricated than ordinary metallic gratings, in the first peak of transmission spectrum.
Resumo:
The tin-doped indium oxide (ITO) thin films were prepared by reactive thermal evaporation on the glass substrates. The effects of substrate temperatures (T-s) on the grain preferred orientation, the electrical and optical properties of ITO films were studied. X-ray diffraction (XRD) patterns indicated that the preferred orientation of film changes from (222) to (400) as T, > 200 degrees C. It can be explained by that the low-index crystallographic planes are easier to be formed when the adatoms have high surface mobility. The Hall measurements indicated that both the concentration and mobility of carrier increase with increasing T,,,. The grain orientation of film does not influence the transmissivity and the carrier concentration, but enhances the carrier mobility. The transmissivity of ITO films is over 90% in the visible wavelength region (except that of the film deposited at 125 degrees C). A minimum resistivity of 5 X 10-4 Omega cm is achieved for the (400) preferred orientation film. Thus, the highest figure of merit of 3.5 x 10(-2) square/Omega is obtained for the film with (400) preferred orientation. The correlation between the preferred orientation and electrical and optical properties are discussed.
Resumo:
Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.
Resumo:
Hydrogenated silicon films with diphasic structure have been prepared by using a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystal. line state. The photoelectronic and microstructural properties of the films have been characterized by the constant photocurrent method (CPM), Raman scattering and nuclear magnetic resonance (NMR). In comparison with typical hydrogenated amorphous silicon (a-Si:H), these diphasic films with a crystalline fraction less than 0.3 show a similar optical absorption coefficient, lower deep-defect densities and higher stability upon light soaking. By using the diphasic nc-Si/a-Si films a p-i-n junction solar cell has been prepared With an initial efficiency of 8.51 % and a stabilized efficiency of 8.02 % on an area of 0.126 cm(2) (AM1.5, 100 mW/cm(2)).
Resumo:
Because of its high energy density direct current(dc)thermal plasmas are widely accepted as a processing medium which facilitates high processing rates high fluxes of radical species the potential for smaller jnstallations a wide choice of reactants and high quench rates[1].A broad range of industrial processing methods have been developed based on dc plasma technology. However,nonstationary features limited new applications of dc plasma in advanced processing, where reliability£¬reproducibility and precise controllability are required£. These challenges call for better understanding of the arc and jet behavior over a wide range of generating parameters and a comprehensive control of every aspect of lhe plasma processing.
Resumo:
We report single mode and multimodes lasing emission from conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) doped polystyrene ( PS) thin films with surface ripples. Surface ripples were formed by water vapour-induced phase separation. A single mode lasing emission at 606 nm with a line-width of less than 0.4 nm was obtained. The laser threshold was as low as 3.5 mu J pulse(-1). The side mode suppression ratio was 5.76 dB. The periodic changes of the refraction index in the MEH-PPV : PS blending film due to the phase separation should be attributed to the lasing actions.
Resumo:
Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry.