154 resultados para Aquatic fulvic acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical structure of fulvic acids extracted from composted corn stalk residue(CSR FA)was studied by Fourier transform infrared (FTIR) spectroscopy, H-1 and C-13 nuclear magnetic resonance(H-1-NMR, C-13-NMR) spectroscopy. The results show that CSR FA mainly consists of four types of carbon: carbonyl, aromatical, alkyl and carbohydrate, the carbohydrate is dominant. Its aromaticity is 15.42%, less than that of CSR HA. This indicates that the construction of CSR FA is simpler than that of CSR HA, FA can not be extracted from undecomposed corn stalk residue. CSR FA may be formed by cellulose or hemicellulosemorties combined with aromatic compound from decomposed lignin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of aquatic humic acids on the bioconcentration and acute toxicity of fenpropathrin were evaluated using grass carp, Ctenopharyngodan idellus, in laboratory freshwater systems. The results demonstrated that both bioavailability and acute toxicity decreased in the presence of aquatic humic acid 5 and 10 mg/liter. In addition, the extent of influence increased with increasing concentration of aquatic humic acid, (C) 1999 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to examine how carbon and nitrogen status of a macrophyte may affect its total phenolics (TP) production, the contents of free amino acids (FAA), soluble carbohydrate (SC) and TP were examined in leaves of seven submersed, four floating-leaved, and four emergent macrophytes. The floating-leaved and emergent macrophytes had much higher contents of SC and TP than the submersed macrophytes. The contents of FAA were not significantly different among the submersed, floating-leaved, and emergent macrophytes. Correlations among the contents of FAA, SC, and TP indicated that the production of TP was more dependent on the SC content than on the FAA content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural humic water was treated with ultraviolet (UV) light and UV + hydrogen peroxide . The effects on the dissolved organic carbon content (DOC), the UV-absorbance at 254 nm (UV-abs.), the molecular size distribution, pH, and mutagenic activity were monitored, and the identity and concentrations of the most abundant gas chromatographable organic degradation products were determined. The DOC content and the UV-abs. of the water decreased substantially during treatment with. The decreases were dependent on the time of irradiation (UV dose) as well as on the H2O2 dose applied. The humus macromolecules were degraded to smaller fragments during irradiation. At higher UV doses, however, part of the dissolved organic matter (DOM) was found to precipitate, probably as a result of polymerization. Oxalic acid, acetic acid, malonic acid, and n-butanoic acid were the most abundant degradation products detected. These acids were found to account for up to 20% and 80% of the DOM in UV- and waters, respectively. No mutagenic activity was generated by the UV irradiation or the treatment. It is further concluded that the substantial mutagenic activity formed during chlorination of humic waters cannot be decreased by using UV irradiation as a pretreatment step.