18 resultados para superconducting material
Resumo:
We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.
Resumo:
224 p. : il. col.
Resumo:
Duración (en horas): Más de 50 horas. Destinatario: Estudiante y Docente
Resumo:
Material de apoyo de la asignatura “Introducción a la contabilidad”. Nivel educativo: Grado.
Resumo:
286 p. : il. col.
Resumo:
105 p. : il. - Ilustraciones de Oscar Mardones Ruiz
Resumo:
Matematikaren ikaskuntza-irakaskuntza prozesuaren elementu nabarmen bat erabiltzen diren material eta baliabideak dira, eta horien artean unitate didaktikoak eta proiektuak. Era askotakoak daude, baina gehienak zaharkiturik daude eta ez dute ikasleen interesa eta motibazioa pizten. Umeen errealitatea, gustuak eta nahiak, eduki, kolore eta jolasekin erlazionaturik dagoen proiektu original eta berritzailea sortzea izan da lan honen helburua. Ikasleak era aktiboan barneratuko dituzte edukiak eta praktikara eraman ahal izango dituzte, ikasketa esanguratsua eta parte hartzailea bultzatuz. Horrek guztiak haurren egunerokotasuna eta interesak barne hartzen dituen proiektu honetan eragina du, emaitza positiboak jasotzerako orduan, eta beraz, ikasleen aldetik, harrera ezin hobea eskaintzen du.
Resumo:
Hydrogen is the only atom for which the Schr odinger equation is solvable. Consisting only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas phase, but di erent temperature and pressures lead to a complex phase diagram, which is not completely known yet. Solid hydrogen was rst documented in 1899 [1] and was found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935 Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2], where molecules would disociate to form a monoatomic metal, as alkali metals that lie below hydrogen in the periodic table. The prediction of the metallization pressure turned out to be wrong: metallic hydrogen has not been found yet, even under a pressure as high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest that a metallic phase may be attained at 450 GPa [3]. The interest of material scientist in metallic hydrogen can be attributed, at least to a great extent, to Ashcroft, who in 1968 suggested that such a system could be a hightemperature superconductor [4]. The temperature at which this material would exhibit a transition from a superconducting to a non-superconducting state (Tc) was estimated to be around room temperature. The implications of such a statement are very interesting in the eld of astrophysics: in planets that contain a big quantity of hydrogen and whose temperature is below Tc, superconducting hydrogen may be found, specially at the center, where the gravitational pressure is high. This might be the case of Jupiter, whose proportion of hydrogen is about 90%. There are also speculations suggesting that the high magnetic eld of Jupiter is due to persistent currents related to the superconducting phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for decades, and the community is trying to answer several questions. For instance, what is the structure of hydrogen at very high pressures? Or a more general one: what is the maximum Tc a phonon-mediated superconductor can have [6]? A great experimental e ort has been carried out pursuing metallic hydrogen and trying to answer the questions above; however, the characterization of solid phases of hydrogen is a hard task. Achieving the high pressures needed to get the sought phases requires advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These devices consist of two diamonds with a tip of small area; for this reason, when a force is applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned into hydrostatic pressure using transmitting media. Nowadays, this method makes it possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does not show metallic properties. A recently developed technique that is an improvement of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in high pressure physics. Another drawback is that the electronic density of the structures is so low that X-ray di raction patterns have low resolution. For these reasons, ab initio studies are an important source of knowledge in this eld, within their limitations. When treating hydrogen, there are many subtleties in the calculations: as the atoms are so light, the ions forming the crystalline lattice have signi cant displacements even when temperatures are very low, and even at T=0 K, due to Heisenberg's uncertainty principle. Thus, the energy corresponding to this zero-point (ZP) motion is signi cant and has to be included in an accurate determination of the most stable phase. This has been done including ZP vibrational energies within the harmonic approximation for a range of pressures and at T=0 K, giving rise to a series of structures that are stable in their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen that includes anharmonicity in ZP energies has suggested that relative stability of the phases may change with respect to the calculations within the harmonic approximation [9]. Many of the proposed structures for solid hydrogen have been investigated. Particularly, the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is metallic. Calculations for this structure, within the harmonic approximation for the ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big ionic displacements, the harmonic approximation may not su ce to describe correctly the system. The aim of this work is to apply a recently developed method to treat anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to Cmca-4 metallic hydrogen. This way, we will be able to study the e ects of anharmonicity in the phonon spectrum and to try to understand the changes it may provoque in the value of Tc. The work is structured as follows. First we present the theoretical basis of the calculations: Density Functional Theory (DFT) for the electronic calculations, phonons in the harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hydrogen and we discuss the results obtained. In the last chapter we draw some conclusions and propose possible future work.
Resumo:
Industria mailan, jaki eta elikagaien prozesamenduaz arduratzen den sektorea garrantzi handia hartzen ari da azken aldian. Batez ere, probiotikoak dituzten elikagaiak dira garrantzia hartzen ari direnak, hauek, onura asko ematen baitizkie hartzen dituen os talariari. Horrela, industriak prozesamendu a azkar ra , merkea eta kalitatekoa izatea bilatzen du. Lan honetan, helburu hauek lort zeko, mikrouhinen teknologia proposatu da; prozesamendu denborak laburtzeko eta produktuaren kalitate ona bermatzeko asmoz. Mat eriala termosentsiblea denez, lehorketa tenperaturekiko izan ditzake en arazoak saihesteko, kapsulen barruan sartzea erabaki da; horrela, biltegiratze orduan eta prozesamendu orduan produktuaren kalitatea mantentzeko. Aurreko guztia kontsideratuta, Sacchar omyces cerevisiae legamiaren mikrouhinen bidezko lehorketa burutzera abiatu da. Prozesuaren zinetika, balorazio energetikoa, deshidratazioaren kalitatea eta mikroorganismoen bideragarritasuna izan dira aztertu diren faktoreak. Esperimentuak burutu ondoren lehorketa prozesurako estrategia optimoa aukeratu da, prozesu guztian operazio aldagaiak k ontrolatuz , produktuaren lehorketa maila eta masa galera azter tuz eta tenperaturen jarraipena eginez.
Resumo:
Gernika-Lumoko Udalarentzat burutuko den proiektu honen helburua, Gernikako Bekoibarra industrialdean, udal material eta makineria gordetzeko pabilioi industrial bat eraikitzea da. Egitura bi solairutan banatuko da. Alde batetik, eraikin osoaren azalera izango duen behe solairuak, materialak eta makineria gordetzeko biltegiak, soldadura tailerra, aldagelak, komunak eta batzar gela hartuko ditu. Bestetik, eraikinaren aurrealdeko lehenengo eta hirugarren portikoen arteko azaleran beste solairu bat eraikiko da non, udal artxibategia, emakume zein gizonezkoentzako komun bana eta bulego bat kokatuko diren. Nabeak bi sarrera izango ditu. Eskuinaldeko fatxadan ibilgailuen joan etorrirako dimentsio handiko ate bat jarriko da. Atzealdeko fatxadan berriz, lehen solairura igo ahal izateko eskailerara emango duen ate txiki bat jarriko da. Pabilioiaren inguruetan, ibilgailuentzako aparkalekua egokituko da.
Resumo:
Duración (en horas): Más de 50 horas Destinatario: Estudiante y Docente
Resumo:
32 p.
Resumo:
58 p.
Resumo:
[ES]Este trabajo de fin de grado tiene como objetivo principal el diseño y la posterior fabricación de una boquilla coaxial que aporte material de cobertura para “laser cladding”. Para ello se utilizarán programas de diseño gráfico para hacer la geometría y programas de elementos finitos para simular el comportamiento del polvo y el gas dentro de la boquilla.
Resumo:
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.