14 resultados para oxidative stress


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP(3)Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP(3)Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by alpha subunit of the eukaryotic initiation factor 2 alpha phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. Cell Death and Disease (2010) 1, e54; doi:10.1038/cddis.2010.31; published online 15 July 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poster presentado 10th Symposium on Aquatic Microbial Ecology (SAME10) september 2-7 2007, Faro

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] Our objective was to determine antioxidant defence activity in healthy controls (HC) and healthy unaffected second-degree relatives of patients with early onset psychosis (HC-FHP),and to assess its relationship with familiar environment measured using the Family Environment Scale (FES). Methods: We included 82 HC and 14 HC-FHP aged between 9 and 17 years. Total antioxidant status,lipid peroxidation, antioxidant enzyme activities and glutathione levels were determined in blood samples. Results:There was a significant decrease in the total antioxidant level in the HC-FHP group compared with the HC group (OR = 2.94; p = 0.009), but no between-group differences in the Global Assessment of Functioning (GAF) scale scores. For the FES, the HC-FHP group had significantly higher scores in the cohesion (p = 0.007) and intellectual-cultural dimensions (p=0.025). After adjusting for these two FES dimensions, total antioxidant status remained significantly different between groups (OR = 10.86, p = 0.009).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ENG]Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Implantation and growth of metastatic cancer cells at distant organs is promoted by inflammation-dependent mechanisms. A hepatic melanoma metastasis model where a majority of metastases are generated via interleukin-18-dependent mechanisms was used to test whether anti-inflammatory properties of resveratrol can interfere with mechanisms of metastasis. Methods: Two experimental treatment schedules were used: 1) Mice received one daily oral dose of 1 mg/kg resveratrol after cancer cell injection and the metastasis number and volume were determined on day 12. 2) Mice received one daily oral dose of 1 mg/kg resveratrol along the 5 days prior to the injection of cancer cells and both interleukin-18 (IL-18) concentration in the hepatic blood and microvascular retention of luciferase-transfected B16M cells were determined on the 18(th) hour. In vitro, primary cultured hepatic sinusoidal endothelial cells were treated with B16M-conditioned medium to mimic their in vivo activation by tumor-derived factors and the effect of resveratrol on IL-18 secretion, on vascular cell adhesion molecule-1 (VCAM-1) expression and on tumor cell adhesion were studied. The effect of resveratrol on melanoma cell activation by IL-18 was also studied. Results: Resveratrol remarkably inhibited hepatic retention and metastatic growth of melanoma cells by 50% and 75%, respectively. The mechanism involved IL-18 blockade at three levels: First, resveratrol prevented IL-18 augmentation in the blood of melanoma cell-infiltrated livers. Second, resveratrol inhibited IL-18-dependent expression of VCAM-1 by tumor-activated hepatic sinusoidal endothelium, preventing melanoma cell adhesion to the microvasculature. Third, resveratrol inhibited adhesion-and proliferation-stimulating effects of IL-18 on metastatic melanoma cells through hydrogen peroxide-dependent nuclear factor-kappaB translocation blockade on these cells. Conclusions: These results demonstrate multiple sites for therapeutic intervention using resveratrol within the prometastatic microenvironment generated by tumor-induced hepatic IL-18, and suggest a remarkable effect of resveratrol in the prevention of inflammation-dependent melanoma metastasis in the liver.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single nucleotide-polymorphisms (SNPs) are a source of diversity among human population, which may be responsible for the different individual susceptibility to diseases and/or response to drugs, among other phenotypic traits. Several low penetrance susceptibility genes associated with malignant melanoma (MM) have been described, including genes related to pigmentation, DNA damage repair and oxidative stress pathways. In the present work, we conducted a candidate gene association study based on proteins and genes whose expression we had detected altered in melanoma cell lines as compared to normal melanocytes. The result was the selection of 88 loci and 384 SNPs, of which 314 fulfilled our quality criteria for a case-control association study. The SNP rs6854854 in ANXA5 was statistically significant after conservative Bonferroni correction when 464 melanoma patients and 400 controls were analyzed in a discovery Phase I. However, this finding could not be replicated in the validation phase, perhaps because the minor allele frequency of SNP rs6854854 varies depending on the geographical region considered. Additionally, a second SNP (rs6431588) located on ILKAP was found to be associated with melanoma after considering a combined set of 1,883 MM cases and 1,358 disease-free controls. The OR was 1.29 (95% CI 1.12-1.48; p-value= 4x10(-4)). Both SNPs, rs6854854 in ANXA5 and rs6431588 in ILKAP, show population structure, which, assuming that the Spanish population is not significantly structured, suggests a role of these loci on a specific genetic adaptation to different environmental conditions. Furthermore, the biological relevance of these genes in MM is supported by in vitro experiments, which show a decrease in the transcription levels of ANXA5 and ILKAP in melanoma cells compared to normal melanocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 mu M) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+](i)) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca-2](i) concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+](i) increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids (omega-3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and omega-3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of omega-3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and omega-3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite advances in neonatal care, hypoxic-ischemic brain injury is still a serious clinical problem, which is responsible for many cases of perinatal mortality, cerebral palsy, motor impairment and cognitive deficits. Resveratrol, a natural polyphenol with important anti-oxidant and anti-inflammatory properties, is present in grapevines, peanuts and pomegranates. The aim of the present work was to evaluate the possible neuroprotective effect of resveratrol when administered before or immediately after a hypoxic-ischemic brain event in neonatal rats by analyzing brain damage, the mitochondrial status and long-term cognitive impairment. Our results indicate that pretreatment with resveratrol protects against brain damage, reducing infarct volume, preserving myelination and minimizing the astroglial reactive response. Moreover its neuroprotective effect was found to be long lasting, as behavioral outcomes were significantly improved at adulthood. We speculate that one of the mechanisms for this neuroprotection may be related to the maintenance of the mitochondrial inner membrane integrity and potential, and to the reduction of reactive oxygen species. Curiously, none of these protective features was observed when resveratrol was administered immediately after hypoxia-ischemia.