4 resultados para Estimador de Direção de Chegada
em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco
Resumo:
Estas notas de clase son de utilidad como material docente para los alumnos de la asignatura Estadística Actuarial: Regresión de la Licenciatura en Ciencias Actuariales y Financieras. También pueden ser útiles a los alumnos de asignaturas afines como es Introducción a la Econometría en la Licenciatura de Administración y Dirección de Empresas y en la Licenciatura de Economía. En estos dos últimos casos sólo necesitarían los capítulos 1, 2 y 3. Las notas de clase se estructuran siguiendo el temario de la asignatura en cuatro capítulos. El primero de ellos introduce el concepto de Econometría y define algunos de los términos más habituales. En el capítulo dos se especifica y estima el Modelo de Regresión Lineal General. Se desarrolla el estimador Mínimo Cuadrático Ordinario, sus propiedades y se muestra como hacer inferencia con él. Se revisa su comportamiento bajo mala especificación del modelo y las consecuencias de disponer de una muestra de variables altamente correlacionadas. En el capítulo tres se muestra como utilizar variables ficticias. En el cuarto y último capítulo se introduce al alumno en las técnicas de validación del modelo. Al inicio de cada capítulo se incluyen los contenidos del mismo y la bibliografía recomendada para dicho contenido. Al final de las notas aparece la bibliografía completa.
Resumo:
Estas notas son de utilidad como material docente para los alumnos de la asignatura Econometría de las Licenciaturas en Ciencias Económicas y en Administración y Dirección de Empresas. Permitirán profundizar en los conceptos vistos en clase más allá del contenido de los temas incluidos en el programa de la asignatura. Las notas se estructuran en cinco capítulos. El primero de ellos revisa los conceptos de teoría asintótica. El segundo muestra el estimador Mínimo Cuadrático Generalizado. Los capítulos tres y cuatro estudian la existencia de heterocedasticidad y autocorrelación en las perturbaciones, respectivamente. El capítulo cinco relaja la hipótesis de regresores no estocásticos y permitiendo la existencia de dinámica en la matriz de regresores. Analiza las propiedades del estimador Mínimo Cuadrático Ordinario en diferentes escenarios y deriva el estimador de Variables Instrumentales. Los capítulos incluyen ejemplos ilustrativos. Al final de las notas aparece la bibliografía completa
Resumo:
Estas notas de clase son de utilidad como material docente, sirviendo de apoyo o complemento, para aquellos alumnos que bien vayan a hacer o hayan seguido alguna asignatura como Introducción a la Econometría (en LE o LADE), Estadística Actuarial: Regresión (LCAF), Econometría aplicada al mercado (LITM). También puede estar indicada para alumnos de las licenciaturas ofrecidas en la Facultad de Ciencias Sociales y de la Comunicación, por ejemplo la Licenciatura de Publicidad y RR.PP. y de algunas Ingenierías, por ejemplo Ingeniería en Organización Industrial. Las notas de clase se estructuran en siete temas. El primero de ellos introduce el concepto de Econometría, define algunos de los términos más habituales y presenta el software libre a utilizar en las aplicaciones, el programa Gretl. En el tema dos se especifica y estima el Modelo de Regresión Lineal Simple. Se desarrolla el estimador Mínimo Cuadrático Ordinario, sus propiedades y se muestra como hacer inferencia con él. En el tema tres se especifica y estima el Modelo de Regresión Lineal General. En el tema cuatro se muestra como realizar contrastes de restricciones lineales. En el tema cinco se revisa su comportamiento bajo mala especificación del modelo. En los temas seis y siete se muestran, respectivamente, las consecuencias de disponer de una muestra de variables altamente correlacionadas y como utilizar variables ficticias. Al final de cada tema se proponen ejercicios para aplicar lo aprendido en el mismo. Al final de las notas aparece la bibliografía completa.
Resumo:
Estas notas de clase son de utilidad como material docente, sirviendo de apoyo o complemento, para aquellos alumnos que bien vayan a hacer o hayan seguido alguna asignatura como Introducción a la Econometría (en LE o LADE), Estadística Actuarial: Regresión (LCAF), Econometría aplicada al mercado (LITM). También puede estar indicada para alumnos de las licenciaturas ofrecidas en la Facultad de Ciencias Sociales y de la Comunicación, por ejemplo la Licenciatura de Publicidad y RR.PP. y de algunas Ingenierías, por ejemplo Ingeniería en Organización Industrial. Las notas de clase se estructuran en siete temas. El primero de ellos introduce el concepto de Econometría, define algunos de los términos más habituales y presenta el software libre a utilizar en las aplicaciones, el programa Gretl. En el tema dos se especifica y estima el Modelo de Regresión Lineal Simple. Se desarrolla el estimador Mínimo Cuadrático Ordinario, sus propiedades y se muestra como hacer inferencia con él. En el tema tres se especifica y estima el Modelo de Regresión Lineal General. En el tema cuatro se muestra como realizar contrastes de restricciones lineales. En el tema cinco se revisa su comportamiento bajo mala especificación del modelo. En los temas seis y siete se muestran, respectivamente, las consecuencias de disponer de una muestra de variables altamente correlacionadas y como utilizar variables ficticias. Al final de cada tema se proponen ejercicios para aplicar lo aprendido en el mismo. Al final de las notas aparece la bibliografía completa.