236 resultados para Cano, Alonso, 1601-1667.
Resumo:
380 p. : il., gráf.
Resumo:
19 p.
Resumo:
This paper describes Mateda-2.0, a MATLAB package for estimation of distribution algorithms (EDAs). This package can be used to solve single and multi-objective discrete and continuous optimization problems using EDAs based on undirected and directed probabilistic graphical models. The implementation contains several methods commonly employed by EDAs. It is also conceived as an open package to allow users to incorporate different combinations of selection, learning, sampling, and local search procedures. Additionally, it includes methods to extract, process and visualize the structures learned by the probabilistic models. This way, it can unveil previously unknown information about the optimization problem domain. Mateda-2.0 also incorporates a module for creating and validating function models based on the probabilistic models learned by EDAs.
Resumo:
Background: A new intervention aimed at managing patients with medically unexplained symptoms (MUS) based on a specific set of communication techniques was developed, and tested in a cluster randomised clinical trial. Due to the modest results obtained and in order to improve our intervention we need to know the GPs' attitudes towards patients with MUS, their experience, expectations and the utility of the communication techniques we proposed and the feasibility of implementing them. Physicians who took part in 2 different training programs and in a randomised controlled trial (RCT) for patients with MUS were questioned to ascertain the reasons for the doctors' participation in the trial and the attitudes, experiences and expectations of GPs about the intervention. Methods: A qualitative study based on four focus groups with GPs who took part in a RCT. A content analysis was carried out. Results: Following the RCT patients are perceived as true suffering persons, and the relationship with them has improved in GPs of both groups. GPs mostly valued the fact that it is highly structured, that it made possible a more comfortable relationship and that it could be applied to a broad spectrum of patients with psychosocial problems. Nevertheless, all participants consider that change in patients is necessary; GPs in the intervention group remarked that that is extremely difficult to achieve. Conclusion: GPs positively evaluate the communication techniques and the interventions that help in understanding patient suffering, and express the enormous difficulties in handling change in patients. These findings provide information on the direction in which efforts for improving intervention should be directed.
Resumo:
The development of techniques for oncogenomic analyses such as array comparative genomic hybridization, messenger RNA expression arrays and mutational screens have come to the fore in modern cancer research. Studies utilizing these techniques are able to highlight panels of genes that are altered in cancer. However, these candidate cancer genes must then be scrutinized to reveal whether they contribute to oncogenesis or are coincidental and non-causative. We present a computational method for the prioritization of candidate (i) proto-oncogenes and (ii) tumour suppressor genes from oncogenomic experiments. We constructed computational classifiers using different combinations of sequence and functional data including sequence conservation, protein domains and interactions, and regulatory data. We found that these classifiers are able to distinguish between known cancer genes and other human genes. Furthermore, the classifiers also discriminate candidate cancer genes from a recent mutational screen from other human genes. We provide a web-based facility through which cancer biologists may access our results and we propose computational cancer gene classification as a useful method of prioritizing candidate cancer genes identified in oncogenomic studies.
Resumo:
Estas notas de clase son de utilidad como material docente, sirviendo de apoyo o complemento, para aquellos alumnos que bien vayan a hacer o hayan seguido alguna asignatura como Introducción a la Econometría (en LE o LADE), Estadística Actuarial: Regresión (LCAF), Econometría aplicada al mercado (LITM). También puede estar indicada para alumnos de las licenciaturas ofrecidas en la Facultad de Ciencias Sociales y de la Comunicación, por ejemplo la Licenciatura de Publicidad y RR.PP. y de algunas Ingenierías, por ejemplo Ingeniería en Organización Industrial. Las notas de clase se estructuran en siete temas. El primero de ellos introduce el concepto de Econometría, define algunos de los términos más habituales y presenta el software libre a utilizar en las aplicaciones, el programa Gretl. En el tema dos se especifica y estima el Modelo de Regresión Lineal Simple. Se desarrolla el estimador Mínimo Cuadrático Ordinario, sus propiedades y se muestra como hacer inferencia con él. En el tema tres se especifica y estima el Modelo de Regresión Lineal General. En el tema cuatro se muestra como realizar contrastes de restricciones lineales. En el tema cinco se revisa su comportamiento bajo mala especificación del modelo. En los temas seis y siete se muestran, respectivamente, las consecuencias de disponer de una muestra de variables altamente correlacionadas y como utilizar variables ficticias. Al final de cada tema se proponen ejercicios para aplicar lo aprendido en el mismo. Al final de las notas aparece la bibliografía completa.
Resumo:
Estas notas de clase son de utilidad como material docente, sirviendo de apoyo o complemento, para aquellos alumnos que bien vayan a hacer o hayan seguido alguna asignatura como Introducción a la Econometría (en LE o LADE), Estadística Actuarial: Regresión (LCAF), Econometría aplicada al mercado (LITM). También puede estar indicada para alumnos de las licenciaturas ofrecidas en la Facultad de Ciencias Sociales y de la Comunicación, por ejemplo la Licenciatura de Publicidad y RR.PP. y de algunas Ingenierías, por ejemplo Ingeniería en Organización Industrial. Las notas de clase se estructuran en siete temas. El primero de ellos introduce el concepto de Econometría, define algunos de los términos más habituales y presenta el software libre a utilizar en las aplicaciones, el programa Gretl. En el tema dos se especifica y estima el Modelo de Regresión Lineal Simple. Se desarrolla el estimador Mínimo Cuadrático Ordinario, sus propiedades y se muestra como hacer inferencia con él. En el tema tres se especifica y estima el Modelo de Regresión Lineal General. En el tema cuatro se muestra como realizar contrastes de restricciones lineales. En el tema cinco se revisa su comportamiento bajo mala especificación del modelo. En los temas seis y siete se muestran, respectivamente, las consecuencias de disponer de una muestra de variables altamente correlacionadas y como utilizar variables ficticias. Al final de cada tema se proponen ejercicios para aplicar lo aprendido en el mismo. Al final de las notas aparece la bibliografía completa.
Resumo:
416 p.
Resumo:
341 p.
Resumo:
271 p.
Resumo:
331 p.
Resumo:
128 p. Retirada a solicitud de la autora 03/03/2016
Resumo:
228 p. : il. Nota: Otro título en Teseo: "la modulación selectiva de los niveles de glutatión con l-2-oxo-4-tiazolidina carboxilato aumenta la eficacia de la interleucina-2 e incrementa el beneficio terapéutico de la bioquimioterapia del melanoma metastático"
Resumo:
240 p. : il., graf.
Resumo:
330 p.