77 resultados para Community colleges|Library science
Resumo:
Background: Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered an unmet medical need. Methodology and Principal Findings: The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney damage in a rat model of hot ischemia. Conclusions: Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.
Resumo:
Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2) evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species at regional scale.
Resumo:
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
Objective: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4-7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results: The nebulization system produced relatively large amounts of aerosol ranging between 0.3 +/- 0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0 +/- 0.1 ml/min for distilled water (H(2)Od) at 6 bar, with MMADs between 2.61 +/- 0.1 mu m for PFD at 7 bar and 10.18 +/- 0.4 mu m for FC-75 at 6 bar. The deposition study showed that for surfactant and H(2)Od aerosols, the highest percentage of the aerosolized mass (similar to 65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH(2)O only increased total airway pressure by 1.59 cmH(2)O at the highest driving pressure (7 bar). Conclusion: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.
Resumo:
Background: Neonatal trials remain difficult to conduct for several reasons: in particular the need for study sites to have an existing infrastructure in place, with trained investigators and validated quality procedures to ensure good clinical, laboratory practices and a respect for high ethical standards. The objective of this work was to identify the major criteria considered necessary for selecting neonatal intensive care units that are able to perform drug evaluations competently. Methodology and Main Findings: This Delphi process was conducted with an international multidisciplinary panel of 25 experts from 13 countries, selected to be part of two committees (a scientific committee and an expert committee), in order to validate criteria required to perform drug evaluation in neonates. Eighty six items were initially selected and classified under 7 headings: "NICUs description - Level of care'' (21), "Ability to perform drug trials: NICU organization and processes (15), "Research Experience'' (12), "Scientific competencies and area of expertise'' (8), "Quality Management'' (16), "Training and educational capacity'' (8) and "Public involvement'' (6). Sixty-one items were retained and headings were rearranged after the first round, 34 were selected after the second round. A third round was required to validate 13 additional items. The final set includes 47 items divided under 5 headings. Conclusion: A set of 47 relevant criteria will help to NICUs that want to implement, conduct or participate in drug trials within a neonatal network identify important issues to be aware of. Summary Points: 1) Neonatal trials remain difficult to conduct for several reasons: in particular the need for study sites to have an existing infrastructure in place, with trained investigators and validated quality procedures to ensure good clinical, laboratory practices and a respect for high ethical standards. 2) The present Delphi study was conducted with an international multidisciplinary panel of 25 experts from 13 countries and aims to identify the major criteria considered necessary for selecting neonatal intensive care units (NICUs) that are able to perform drug evaluations competently. 3) Of the 86 items initially selected and classified under 7 headings - "NICUs description - Level of care'' (21), "Ability to perform drug trials: NICU organization and processes (15), "Research Experience'' (12), "Scientific competencies and area of expertise'' (8), "Quality Management'' (16), "Training and educational capacity'' (8) and "Public involvement'' (6) - 47 items were selected following a three rounds Delphi process. 4) The present consensus will help NICUs to implement, conduct or participate in drug trials within a neonatal network.
Resumo:
Neurodevelopmental disruptions caused by obstetric complications play a role in the etiology of several phenotypes associated with neuropsychiatric diseases and cognitive dysfunctions. Importantly, it has been noticed that epigenetic processes occurring early in life may mediate these associations. Here, DNA methylation signatures at IGF2 (insulin-like growth factor 2) and IGF2BP1-3 (IGF2-binding proteins 1-3) were examined in a sample consisting of 34 adult monozygotic (MZ) twins informative for obstetric complications and cognitive performance. Multivariate linear regression analysis of twin data was implemented to test for associations between methylation levels and both birth weight (BW) and adult working memory (WM) performance. Familial and unique environmental factors underlying these potential relationships were evaluated. A link was detected between DNA methylation levels of two CpG sites in the IGF2BP1 gene and both BW and adult WM performance. The BW-IGF2BP1 methylation association seemed due to non-shared environmental factors influencing BW, whereas the WM-IGF2BP1 methylation relationship seemed mediated by both genes and environment. Our data is in agreement with previous evidence indicating that DNA methylation status may be related to prenatal stress and later neurocognitive phenotypes. While former reports independently detected associations between DNA methylation and either BW or WM, current results suggest that these relationships are not confounded by each other.
Resumo:
We aimed to study the selective pressures interacting on SLC45A2 to investigate the interplay between selection and susceptibility to disease. Thus, we enrolled 500 volunteers from a geographically limited population (Basques from the North of Spain) and by resequencing the whole coding region and intron 5 of the 34 most and the 34 least pigmented individuals according to the reflectance distribution, we observed that the polymorphism Leu374Phe (L374F, rs16891982) was statistically associated with skin color variability within this sample. In particular, allele 374F was significantly more frequent among the individuals with lighter skin. Further genotyping an independent set of 558 individuals of a geographically wider population with known ancestry in the Spanish population also revealed that the frequency of L374F was significantly correlated with the incident UV radiation intensity. Selection tests suggest that allele 374F is being positively selected in South Europeans, thus indicating that depigmentation is an adaptive process. Interestingly, by genotyping 119 melanoma samples, we show that this variant is also associated with an increased susceptibility to melanoma in our populations. The ultimate driving force for this adaptation is unknown, but it is compatible with the vitamin D hypothesis. This shows that molecular evolution analysis can be used as a useful technology to predict phenotypic and biomedical consequences in humans.
Resumo:
Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.
Resumo:
Dendritic cells (DCs) are essential in order to combat invading viruses and trigger antiviral responses. Paradoxically, in the case of HIV-1, DCs might contribute to viral pathogenesis through trans-infection, a mechanism that promotes viral capture and transmission to target cells, especially after DC maturation. In this review, we highlight recent evidence identifying sialyllactose-containing gangliosides in the viral membrane and the cellular lectin Siglec-1 as critical determinants for HIV-1 capture and storage by mature DCs and for DC-mediated trans-infection of T cells. In contrast, DC-SIGN, long considered to be the main receptor for DC capture of HIV-1, plays a minor role in mature DC-mediated HIV-1 capture and trans-infection.
Resumo:
Effects of context on the perception of, and incidental memory for, real-world objects have predominantly been investigated in younger individuals, under conditions involving a single static viewpoint. We examined the effects of prior object context and object familiarity on both older and younger adults' incidental memory for real objects encountered while they traversed a conference room. Recognition memory for context-typical and context-atypical objects was compared with a third group of unfamiliar objects that were not readily named and that had no strongly associated context. Both older and younger adults demonstrated a typicality effect, showing significantly lower 2-alternative-forced-choice recognition of context-typical than context-atypical objects; for these objects, the recognition of older adults either significantly exceeded, or numerically surpassed, that of younger adults. Testing-awareness elevated recognition but did not interact with age or with object type. Older adults showed significantly higher recognition for context-atypical objects than for unfamiliar objects that had no prior strongly associated context. The observation of a typicality effect in both age groups is consistent with preserved semantic schemata processing in aging. The incidental recognition advantage of older over younger adults for the context-typical and context-atypical objects may reflect aging-related differences in goal-related processing, with older adults under comparatively more novel circumstances being more likely to direct their attention to the external environment, or age-related differences in top-down effortful distraction regulation, with older individuals' attention more readily captured by salient objects in the environment. Older adults' reduced recognition of unfamiliar objects compared to context-atypical objects may reflect possible age differences in contextually driven expectancy violations. The latter finding underscores the theoretical and methodological value of including a third type of objects-that are comparatively neutral with respect to their contextual associations-to help differentiate between contextual integration effects (for schema-consistent objects) and expectancy violations (for schema-inconsistent objects).
Resumo:
Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous condition characterized by occasional exacerbations. Identifying clinical subtypes among patients experiencing COPD exacerbations (ECOPD) could help better understand the pathophysiologic mechanisms involved in exacerbations, establish different strategies of treatment, and improve the process of care and patient prognosis. The objective of this study was to identify subtypes of ECOPD patients attending emergency departments using clinical variables and to validate the results using several outcomes. We evaluated data collected as part of the IRYSS-COPD prospective cohort study conducted in 16 hospitals in Spain. Variables collected from ECOPD patients attending one of the emergency departments included arterial blood gases, presence of comorbidities, previous COPD treatment, baseline severity of COPD, and previous hospitalizations for ECOPD. Patient subtypes were identified by combining results from multiple correspondence analysis and cluster analysis. Results were validated using key outcomes of ECOPD evolution. Four ECOPD subtypes were identified based on the severity of the current exacerbation and general health status (largely a function of comorbidities): subtype A (n = 934), neither high comorbidity nor severe exacerbation; subtype B (n = 682), moderate comorbidities; subtype C (n = 562), severe comorbidities related to mortality; and subtype D (n = 309), very severe process of exacerbation, significantly related to mortality and admission to an intensive care unit. Subtype D experienced the highest rate of mortality, admission to an intensive care unit and need for noninvasive mechanical ventilation, followed by subtype C. Subtypes A and B were primarily related to other serious complications. Hospitalization rate was more than 50% for all the subtypes, although significantly higher for subtypes C and D than for subtypes A and B. These results could help identify characteristics to categorize ECOPD patients for more appropriate care, and help test interventions and treatments in subgroups with poor evolution and outcomes.
Resumo:
We have recently shown that the transient receptor potential vanilloid type 1 (TRPV1), a non-selective cation channel in the peripheral and central nervous system, is localized at postsynaptic sites of the excitatory perforant path synapses in the hippocampal dentate molecular layer (ML). In the present work, we have studied the distribution of TRPV1 at inhibitory synapses in the ML. With this aim, a preembedding immunogold method for high resolution electron microscopy was applied to mouse hippocampus. About 30% of the inhibitory synapses in the ML are TRPV1 immunopositive, which is mostly localized perisynaptically (similar to 60% of total immunoparticles) at postsynaptic dendritic membranes receiving symmetric synapses in the inner 1/3 of the layer. This TRPV1 pattern distribution is not observed in the ML of TRPV1 knock-out mice. These findings extend the knowledge of the subcellular localization of TRPV1 to inhibitory synapses of the dentate molecular layer where the channel, in addition to excitatory synapses, is present.
Resumo:
Background Jumping to conclusions (JTC) is associated with psychotic disorder and psychotic symptoms. If JTC represents a trait, the rate should be (i) increased in people with elevated levels of psychosis proneness such as individuals diagnosed with borderline personality disorder (BPD), and (ii) show a degree of stability over time. Methods The JTC rate was examined in 3 groups: patients with first episode psychosis (FEP), BPD patients and controls, using the Beads Task. PANSS, SIS-R and CAPE scales were used to assess positive psychotic symptoms. Four WAIS III subtests were used to assess IQ. Results A total of 61 FEP, 26 BPD and 150 controls were evaluated. 29 FEP were revaluated after one year. 44% of FEP (OR = 8.4, 95% CI: 3.9-17.9) displayed a JTC reasoning bias versus 19% of BPD (OR = 2.5, 95% CI: 0.8-7.8) and 9% of controls. JTC was not associated with level of psychotic symptoms or specifically delusionality across the different groups. Differences between FEP and controls were independent of sex, educational level, cannabis use and IQ. After one year, 47.8% of FEP with JTC at baseline again displayed JTC. Conclusions JTC in part reflects trait vulnerability to develop disorders with expression of psychotic symptoms.
Resumo:
Objective: Although dobutamine is widely used in neonatal clinical practice, the evidence for its use in this specific population is not clear. We conducted a systematic review of the use of dobutamine in juvenile animals to determine whether the evidence from juvenile animal experiments with dobutamine supported the design of clinical trials in neonatal/ paediatric population. Methods: Studies were identified by searching MEDLINE (1946-2012) and EMBASE (1974-2012). Articles retrieved were independently reviewed by three authors and only those concerning efficacy and safety of the drug in juvenile animals were included. Only original articles published in English and Spanish were included. Results: Following our literature search, 265 articles were retrieved and 24 studies were included in the review: 17 focused on neonatal models and 7 on young animal models. Although the aims and design of these studies, as well as the doses and ages analysed, were quite heterogeneous, the majority of authors agree that dobutamine infusion improves cardiac output in a dose dependent manner. Moreover, the cardiovascular effects of dobutamine are influenced by postnatal age, as well as by the dose used and the duration of the therapy. There is inadequate information about the effects of dobutamine on cerebral perfusion to draw conclusions. Conclusion: There is enough preclinical evidence to ensure that dobutamine improves cardiac output, however to better understand its effects in peripheral organs, such as the brain, more specific and well designed studies are required to provide additional data to support the design of clinical trials in a paediatric population.