23 resultados para 330514 Viviendas
Resumo:
[EU]Komunikabideetan hainbesteko oihartzuna izan zuen eta saldu edo alokatutako etxebizitzak energia eraginkortasunaren ziurtagiria izatera derrigortzen zituen dekretuak urtebete eskas bete du. Proiektu honetan aipatutako legea 2020. urterako ezarritako europar helburu energetikoak betetzeko bidean kokatu egiten da, ziurtapenerako jarraitu beharreko metodologian gehiago sakonduz eta aipaturiko helburuentzako duen garrantzia azpimarratuz. Proiektuak bi zati nagusi ditu. Lehenengo zatian, proiektuaren helburu nagusia den etxebizitza baten kalifikazio energetikoa burutzen da, G letrako kalifikaziorik baxuena lortuz. Ondoren, kalifikatutako etxebizitzaren energia eraginkortasuna hobetzeko neurri posible batzuek bideragarritasuna aztertzen da. E letra erraztasun nahikoz lor daiteke, inbertsioaren berreskuratze aldi oso onargarriekin. C letraraino igotzea ere posible da aztertutako neurriak bateratuz, baina berreskuratze aldiak handiagoak izango lirateke.
Resumo:
[ES]Este proyecto tiene como objetivo generar energía eléctrica y térmica para un conjunto de viviendas aisladas, sin acceso a la red eléctrica, con una potencia requerida de 12KW. Se pretende plantear una solución que satisfaga las necesidades básicas de auto-abastecimiento de una forma económicamente rentable. Para comenzar, por un lado de cara al objetivo 20/20/20 se realizará un acercamiento a la utilización de las energías renovables como fuente de energía, disminuyendo así el impacto ambiental. Por otro lado, se plantearán diferentes alternativas para la generación de energía eléctrica y térmica, finalmente haciendo hincapié en el estudio de una planta de gasificación de biomasa mediante astillas de madera. De modo que, a lo largo de este documento se analizarán los principios y fundamentos necesarios para el diseño de una planta de generación eléctrica mediante gasificación de biomasa. Para ello se estudiarán los diferentes modelos de gasificadores existentes, el desarrollo del proceso de gasificación con sus respectivas etapas y la limpieza y adaptación del gas obtenido antes de introducirlo en el MACI. Se realizará una descripción de la planta junto al dimensionamiento tanto del almacenamiento de la materia prima como el de los equipos a instalar. Finalmente, para valorar si se trata de un proyecto viable. Se realizará el estudio económico analizando el presupuesto y análisis de rentabilidad. Asimismo, se plantearán los diferentes riesgos a los que puede exponerse una instalación como esta.
Resumo:
[EU]Garatutako txosten honekin, etxebizitza baten kalifikazio energetikoa burutuko da. Izan ere, gai honek orain dela bi urte sartu zen dekretuaren ondorioz berebiziko garrantzia hartu du etxe bat saldu edo alokatzeko orduan. Aipatutako kalifikazio energetikoa lortu ahal izateko CE3X programa erabiliko da. Horretarako, beharrezko izango da aztertutako etxearen datu aipagarrienak izatea (neurriak, materialak, leihoak...). Lehenik eta behin, proiektuaren helburu den etxebizitzaren kalifikazio energetikoa lortuko da, F letra eskuratuz, oso kalifikazio baxua dena. Ondoren, hobekuntza batzuk aplikatuko zaizkio etxeari energia eraginkortasuna hobetzeko asmoarekin. Hori eginez gero, E letra bat lortzea posible izango da amortizazio epe eta inbertsio nahiko onargarriekin.
Resumo:
[ES]A raíz de la situación energética actual y con el fin de mejorar, hace dos año entraba en vigor en España la ley que obliga a realizar una certificación energética de las viviendas que se vendan o alquilen. De este modo se contribuye a los objetivos marcados por la UE para el año 2020. El proyecto está dividido en tres apartados principales. El primero, y el mas extenso, consiste en realizar la certificación de la vivienda. En segundo lugar, se detectaran los punto mas conflictivos, energéticamente hablando, de la vivienda y se estudiaran posibles mejoras. Finalmente se realizara un estudio económico de las mismas.
Resumo:
493 p.
Resumo:
472 p.
Resumo:
Este proyecto nace de la necesidad de tener energía eléctrica en cada hogar, debido al aumento de nuevos aparatos eléctricos, del aumento del coste de la energía por parte de las compañías eléctricas y de la inminente desaparición de los materiales fósiles como el petróleo o el carbón para la generación de electricidad. Para ello se crea este proyecto, para que comunidades de vecinos o viviendas aisladas, tengan la posibilidad de autoabastecerse de energía eléctrica. A pesar de un primer desembolso de dinero para su implantación, tras su implantación se verá reducida la factura de la luz. Este proyecto se compone de dos grandes subgrupos, la parte mecánica y la parte eléctrica o electrónica. De estas dos, nos hemos centrado en la parte mecánica. Que se descompone en varios subconjuntos que son; la base del aerogenerador, la jaula completa y el posicionamiento o la parte superior del aerogenerador. Cada subconjunto se divide en mas subconjunto y finalmente en cada componente. Para ello se ha realizado un pequeño estudio aerodinámico de las zonas ideales de colocación del aerogenerador, altura mínima de colocación para una optima generación. Por otra parte, para la elección del numero de alabes del rotor se ha tomado en cuenta un estudio realizado en un túnel de viento realizado por Ben F. Blackwell, Robert E. Sheldahl y Louis V. Feliz. En la que se llega a la conclusión que mas alabes no aumenta la eficiencia del aerogenerador. Por lo que se optó por un aerogenerador de dos alabes. Puesto que la eficiencia era pequeña debido a que cuando el aire golpea en un rotor desnudo, disminuye la velocidad de giro de éste por que el aire golpea en sus partes cóncavas y convexas generando fuerzas en sentidos opuestos. Por lo que se desarrollo un estator para la canalización del flujo del aire a los alabes del rotor. Este estator es de aberturas regulables según el caudal de aire que se disponga, también funciona como mecanismo de seguridad en caso de velocidades muy grandes de viento, para evitar que el rotor se embale y genere daños dentro de este. Este mecanismo de posicionamiento de los alabes del estator se regulan mediante un PLC que tiene varios sensores por el aerogenerador para abrir o cerrar el estator cuando haga falta. Debido a que el estator es semiautomático, se han previsto una serie de medidas de prevención de riesgos para evitar daños físicos. También es necesario que se coloque una barandilla que limite el espacio del aerogenerador o por el contrario delimitar el acceso de las azoteas a personal autorizado. El posicionamiento de los alabes del estator se controlan desde la parte superior del aerogenerador, mediante un motor step, un reductor y un disco del cual salen vástagos con garfios en el extremo que se unen al alabe móvil. La fijación entre vástago y garfio se realiza mediante un pasador. El motor step es quien proporciona un torque pequeño que al pasar por el reductor aumenta hasta darnos el par necesario para mover el conjunto de los alabes del estator con rachas de viento hasta . El motor step va fijado mediante una brida metálica al soporte de reductor para evitar que se mueva. El reductor se fija a la pieza mediante la cual pivota el disco de posicionamiento. La pieza de pivote se le han realizado una serie de rebajes disminuir el peso, por lo que para su conformado se realizará mediante inyección de plástico al igual que el garfio y el disco de posicionamiento. El aerogenerador esta sujeto mediante seis pilares inferiores y un pilar central que se encarga de sustentar el rotor. Estos pilares reparten el peso del aerogenerador y a su vez sostienen la pletina exterior que esconde los elementos que hay debajo como; la multiplicadora, el alternador, el cardan y el PLC. La pletina tendrá una abertura por la que el operario tendrá acceso a sus partes. La pletina exterior estará formada por varias láminas de acero unidas por cordones de soldadura. La pletina estará sujeta mediante tornillería a los pilares. El montaje de los subconjuntos se realizarán en el sitio donde se vaya a colocar el aerogenerador a excepción del reductor que es posible su montaje en taller. Previamente se tendrán que colocar barras roscadas en el suelo de la azotea para la posterior colocación y amarre de los pilares. En ese instante se colocará la multiplicadora y el alternador. La jaula junto con los alabes se montará encima de los pilares y a su vez se colocará el rotor. Posteriormente se colocará la tapa y el mecanismo de posicionamiento de los alabes y la cúpula. Una vez fijado el rotor se colocará el cardan que unirá rotor y multiplicadora. Se colocará el acople entre alternador y la multiplicadora. Se finalizara con el cierre de la pletina. Se colocarán los aparatos electrónicos que harán que el aerogenerador se comporte como un aparato semiautomático. En un compartimento dentro del edificio se colocarán baterías que acumularán la energía generada. En este habitáculo se colocará un aparato donde se visualice la potencia que se esta generando así como la velocidad de rotación y la velocidad del viento. Junto a este aparato un pulsador de parada de emergencia. Alrededor del aerogenerador se colocarán señales que indiquen los peligros que se pueden dar así como, las precauciones a tener en cuenta. Las medidas vendrán escritas en un documento junto con los mantenimientos que se han de dar. En la puerta de acceso a la azotea y en la ventana de acceso a los interiores del aerogenerador habrá un resumen del documento anteriormente descrito.
Resumo:
Cálculo y diseño de una grúa torre desmontable con brazo horizontal giratorio destinada a la elevación y transporte de material de construcción en edificios de viviendas