11 resultados para Sugar and ethanol industry
em Aquatic Commons
Resumo:
The author reviews the advances in the oil and meal industries related to the oil sardine fishery (Sardinella longiceps) since the 1920s. Data on the production of by-produced produced in Kerala over the period 1964- 69 are tabulated. Details of the properties of the commercial oil are given, and the values compared to those for other similar oils. The use of oil sardine for industrial purposes - the oil has been used to cure leather, temper metals and as fungicides or insecticides - and the production of fish meal and fish protein concentrate is considered.
Resumo:
This study provides guidance on statewide organization for the commercial hard clam culture industry in Florida. The study characterizes the structure of and identifies strategies for successful agricultural and aquacultural organizations designed to provide the resources needed to solve current and projected industry problems. Objectives were to 1) characterize the structure of successful and relevant organizations, 2) identify successful revenue generating strategies, 3) provide the hard clam culture industry with options to help facilitate their organizational decisions, and 4) assist clam growers in Florida in developing an umbrella organizational strategy that will meet their future industry needs. (PDF has 60 pages.)
Resumo:
Information n the life-history and management of the Oyster and Oyster Industry. Dr. Truitt has traveled and researched almost every important oyster producing Area in America. Includes semidiagramatic sketches of anatomy, information on food and feeding, respiration and circulation,valves, reproduction. Oyster production - natural beds or rocks, oyster farming, tongs and tonging, dredge. Marketing - canned, raw, shell stock. Includes bibliography. (PDF contains 47 pages)
Resumo:
Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)
Resumo:
Goldfish (Carassius auratus) were subjected, for a period of 6 weeks, to 2h progressive hypoxia followed by 6h anoxia in closed respirometers at 15 degree C. The concentrations of glucose, lactate and ethanol were determined in whole goldfish following exposure to both hypoxia and anoxia. Lactate accumulation (mmol/kg/h) was 0.35 during the 1st week but declined to 0.14 in the 6th week of exposure to anoxia. In contrast, ethanol excreted to the surrounding water, increased from 65% to 92% of the total production in the lst and 6th week, respectively. The switch from lactate accumulation to ethanol pathway utilization, with the resultant metabolic depression and anoxia resistance is discussed
Resumo:
Experiments were conducted to develop and standardize the protocols for cryopreservation of sperm of common carp, Cyprinus carpio and also for using the cryopreserved sperm for fertilization of eggs. Nine extender solutions as Alsever's solution, kurokura-1, kurokura-2, urea egg-yolk, egg-yolk citrate, 0.6% glucose, 0.9% NaCl, Ma and Mb, and five cryoprotectants namely ethanol, methanol, dimethylsulfoxide (DMSO), dimethylamine (DMA) and glycerol were tested. The cryoprotectants were mixed at 10% concentration of the extenders (v/v) to make the cryodiluents. Milt and cryodiluents were mixed at a ratio of 1:9 for Alsever's solution, kurokura-1, kurokura-2, 0.6% glucose and 0.9% NaCl, 1:4 for urea egg-yolk, egg-yolk citrate, Ma and Mb. Among the cryodiluents Alsever's solution mixed with either ethanol or methanol was found to be suitable and it produced more than 90% and 80% spermatozoan motility at equilibrium and post-thaw periods, respectively. Kurokura-1 and kurokura-2 when mixed with the same cryoprotectants showed good spermatozoan motility at equilibrium period (80-90%) but the motility was reduced (30-55%) at post-thaw state. Other extenders did not produce acceptable sperm-motility and in some cases the frozen milt became clotted. Different dilution ratios (1:1, 1:2, 1:4, 1:5, 1:7, 1:9, 1:12, 1:15, 1:20) were formulated for obtaining a suitable milt dilution, the dilution ratio of 1: 9 (milt : cryodiluent) demonstrated the highest post-thaw spermatozoan motility (80%) in Alserver's solution. The optimum concentration of cryoprotectants in the cryodiluents was determined, 10% concentration level was found to be effective to produce the highest number of spermatozoan motility in comparison to the other concentrations (5%, 15%, 20% 30%). Sperm preserved with the cryodiluent Alsever's solution along with either methanol or ethanol was found to be effective to fertilize eggs and produce hatchlings. The hatching rates ranged between 1.48% and 14.76%, compare to control. The fish produced through use of cryopreserved sperm and normal sperm were found to grow well and no significant (P<0.05) growth difference was observed between them. In case of silver barb, Barbonymus gonionotus, sperm tested against six extenders such as egg-yolk citrate, urea-egg-yolk, kurokura-1, kurokura-2, 0.9% NaCl and modified fish ringer (MFR) solution. Cryoprotectants used were the same as those of C. carpio. Milt was diluted with the cryodiluent at a ratio of 1:4 for egg-yolk citrate and urea-egg-yolk, 1:5 for kurokura-1 and 1:9 for 0.9% NaCl, MFR and kurokura-2. The cryoprotectant concentration was maintained at 10% of the extender (v/v) in all the cases. Among the extenders, egg-yolk citrate and urea-egg-yolk mixed with 10% DMSO, methanol and ethanol produced 50% post-thaw spermatozoan motility, whereas DMA and glycerol provided only 10% motility. Trials on milt dilution ratio and cryoprotectant concentration are being conducted. Fertilization trials are also underway.
Resumo:
Cryogenic preservation trials of spermatozoa of Labeo rohita were carried out. Twenty four cryodiluents (extender + cryoprotectant), with the combination of six extenders such as egg-yolk citrate, urea-egg-yolk, 0.9% NaCl, Kurokura-2, Ma and Mb and four cryoprotectants viz. DMSO, glycerol, methanol and ethanol, were used to screen out the suitable cryodiluents. Sperm was preserved in 0.25ml plastic straw in programmable freezer. Two step freezing method was followed. Sperm preserved with egg-yolk citrate and urea-egg-yolk containing 10% DMSO showed best post-thaw motility (80%) followed by 0.9% NaCl (60%) and Kurokura-2(30%) solutions. Sperm with the extenders M" and Mb clotted at the time of equilibration and also after few days of preservation. Egg-yolk citrate mixed with ethanol and methanol also showed good percentage of motility (80%) but egg-yolk citrate with glycerol showed less sperm motility (>60%). To determine suitable dilution ratio of milt and cryodiluent two best extender eggyolk citrate and urea-egg-yolk with four cryoprotectants such as DMSO, glycerol, methanol and ethanol at different ratio viz 1:2,1:4,1:7,1:10,1:15 and 1:20 were used. Highest post-thaw motility (>80%) was observed when milt was preserved with egg-yolk citrate containing 10% DMSO at 1:2, 1:4, 1:7 and 1:10 dilutions. Meanwhile using glycerol as cryoprotectants provided less post thaw motility at lower dilution ratio but with the increase of its dilution showed good sperm motility compared with other cryoprotectants. Finally, evaluation on the effect of cryoprotectant concentration on post-thaw sperm motility was conducted. Egg-yolk citrate and four cryoprotectant i.e. DMSO, glycerol, methanol and ethanol with six different concentrations namely 5%,7%, 10%, 15%, 20% and 30%.were evaluated. Among the cryoprotectants DMSO, methanol and ethanol showed highest post-thaw motility (about 80%) at 7% and 10% concentrations. Although glycerol was not suitable at low concentration but its 20% and 30% concentration levels provided best post-thaw motility. No post-thaw motility was obtained with DMSO at 30% concentration. The overall analysis on cryoprotectant concentration indicated that below 5% and above 20% cryoprotectant concentrations could not be suitable for effective cryopreservation of spermatozoa.
Resumo:
The present investigation was undertaken to establish a reference situation for future use, to identify temporal and spatial composition of macrofauna and estimate some ecological indices in the sub tidal waters along the Bushehr coastal waters in Persian Gulf. Six transects were selected including Genaveh, Farakeh, Shif, Bandargah, Rostami and Asalouyeh, at each transect 3 station were sampled in depths of zero, 5 and 10 metres. Sampling was seasonally carried out by a VAN VEEN grab 0.0225 m2, during summer 2008 until spring 2009. Samples were wet sieved immediately using 0.5 mm mesh size sieves and sediment retained in the sieve was preserved in 4% buffered formalin solution. Macrofauna specimen were separated from the sediments using decantation and elutriation methods, enumerated and identified up to the Genus level. Environmental factors such as temperature. pH, and salinity were recorded in field using sensitive probs and refractometer (for salinity) and also sediment samples were taken for TOM and grain size analysis in all the stations. 5611 specimens belonging to 66 genera were collected during the present study. Polychaetes were dominant both in terms of genus number (31) and relative abundance (74 % of total macrofaunal abundance). The other dominant groups were Artheropoda, (16.1%), Molusca (2.8%), Echinodermata (1.29%) and others including Nematoda, Nemertina, Echiura and Turbellaria (5.8%). Thirty one Genera belong of 27 families of polychaeta, one genus and family of Subphylum Chlicerata,19 genera belong to 14 families of Crustacea, 8 genera belong to 6 families of Molusca, were indentified in the studied region. 1 family (Polygordidae) and 3 genera (Flabeligera, Pilargis and Polygordius) of Polychaeta, 1 family (Nymphonidae) and genus (Nymphon) of Chelicerata, 1 Family (Nematoplanidae) and genus (Nematoplana) of Turbellaria, were identified for the first time in Persian Gulf area. The result indicated that macrofauna organism have strong relationship with the grain size characteristics of the sediments they inhabit. The most surface deposit feeder specimens such as Prionospio and Cossura were found in zero meters depth of Genaveh, Farakeh, Bandargah, Rostami and Asalouyeh stations with sandy substratum, however the most burrowing deposit feeder and scavenger specimens such as Capitella and Petaloproctus were collected in 5 and 10 meter depths of stations with silty–clay substratum. The annual mean abundance, Shanon- weiner diversity and evenness of macrofauna were estimated1152.73 N/ m² , 2.72 and 0.792 respectively .The annual average biomass and secondary production were computed 1.797 gDW m² and 3.594 gDW m² y-1 .The average of water temperature, salinity, pH and oxygen concentration were recorded between 16.37-36.05 °C, 38-42 g/l, 7.89-8.76 and 4.23-8.23 mg/l, respectively during this study in 6 studied region. Among of investigated stations Asalouyeh adjacent of effluent canal of Gas and petrochemical industry sewage and Farakeh regions adjacent the Helleh estuary had the lowets and the highest community indices. The average of diversity and density in 5 meters depth stations with moderate of sand, silt and clay were slightly more than 2 other depths stations, it seems that 5 meters stations are made a transition habitats between 2 sandy and clay habitats, that can be used by 2 groups of surface and borrowing deposit feeders. Based on the data provided in this survey, the temperature variation, sediment texture, TOM, type habitat and manmade factors of Gas and petrochemical industries have had the most effect on the macrofauna community structure in the studied region during sampling periods.
Resumo:
Various countries have formulated special integrated coastal zone management (ICZM) strategies which seek to both manage development and conserve natural resources and integrate and coordinate the relevant people sectors and their functions and roles within the bounds of this rich realm. Concerns that may be addressed by ICZM include: 1) Natural resources degradation; 2) Pollution; 3) Land use conflicts; and, 4) Destruction of life and property by natural hazards. Some prevalent sources of environmental impacts (livelihoods) are listed, together with some recommendations to the concerns which they may raise in relation to coastal zone management: agriculture; aquaculture; fisheries; forestry; human settlements; tourism; and, transport industry.