68 resultados para Characteristics of nitrogen fixation
em Aquatic Commons
Resumo:
This communication reports the changes in physical, organoleptic and biochemical characteristics of prawn meat dip-treated with alkaline and neutral solutions of polyphosphates during frozen storage. Results are presented on changes in thawed and cooked yields, water extractable nitrogen, non-protein nitrogen, free amino-nitrogen, salt solubility, myosin and moisture in the muscle and loss of soluble nitrogenous constituents in thaw drip during frozen storage up to seven months. The salt solubility remained unchanged during storage in samples treated with neutral polyphosphate solutions and the organoleptic quality was superior to control sample. It is concluded that dip treatment with neutralized solutions of tripolyphosphate not only maintains correct drained weight and improves cooked yield during prolonged frozen storage but also protects the frozen product from denaturation as measured by the salt solubility of the proteins.
Resumo:
Proximate composition and nutritional characteristics of the two fermented fish products Hentak and Ngari of Manipur (India) were evaluated. Percentage of moisture, protein, lipid and ash contents in Hentak and Ngari were respectively: 36.30 versus 36.03; 33.33 versus 38.38; 13.60 versus 13.34 and 11.43 versus 5.49. Digestibility values in feeding trials in laboratory rats for 28 days were 82.37% for Hentak 89.46% for Ngari and that of Casein was 92.69%. The biological value, food conversion ratio and protein efficiency ratio (PER) of Hentak were 96.94, 4.83 and 1.8 respectively and that of Ngari were 97.83, 3.17 and 1.8 respectively. The α amino nitrogen of Hentak and Ngari in Pepsin + Trypsin phase were 28.40 and 28.92 respectively. The TBA number, peroxide value and TVBN were within the acceptable limits.
Resumo:
Cultured silver carp (Hypopthalmichthys molitrix 800-1000 g) was stored in ice (fish to ice ratio 1:1) in a plywood box insulated with one inch thick expanded polystyrene and subjected to detailed examination of quality by chemical, microbiological and organoleptic evaluation at regular intervals to assess the storage life in good acceptable form. Alpha-amino nitrogen, non-protein nitrogen and pH values showed no positive correlation as spoilage index. Total volatile base nitrogen was not high at the end of the storage period although the fish became unacceptable during the period. There was steep decrease in total bacterial count during initial stages of storage and then increased steadily on further storage. Organoleptic evaluation of raw and cooked meat revealed that fish was in good acceptable form up to 14 days in ice.
Resumo:
A value-added extruded fish product was prepared with corn flour (80%) and fish (sciaenid) powder (20%), using a twin-screw extruder. The effect of different parameters like moisture, temperature, fish powder concentration, speed of the extruder and die-diameter on expansion ratio and crisp texture were studied. The storage characteristics of the final product were studied using three different types of packaging under nitrogen flushing. The study revealed that aluminum foil is the best packaging material to keep the product acceptable for more than three months.
Resumo:
Fresh Bombay duck (Harpodon nehereus) can be quick frozen at -40°C and stored at -l0°F for about 3 months in a very fair and acceptable condition. The maximum drip loss observed was about 24%. Rapid decrease in the extractable protein nitrogen of the fish muscle was noted during the frozen storage.
Resumo:
Ice-storage study of blood clam (Anadara granosa) meat in direct contact and out of contact (in 200 gauge polyethylene bag) with ice was taken up to assess the amenability of the meat to icing. Changes in moisture, total protein, non-protein nitrogen, α amino nitrogen, total volatile base nitrogen, glycogen, free fatty acid, peroxide value, total bacterial count and coliform count were followed every day. The raw and cooked meat were also subjected to organoleptic evaluation. The study showed that the clam meat can be ice-stored in very good condition out of contact with ice in polyethylene packets for 4 days and in direct contact with ice for 2 days.
Resumo:
Fresh sole fish (Cynoglossus macrolepidotus) was quick frozen at -40°C and stored at -18°C. Shelf life was evaluated by following biochemical, bacteriological and organoleptic changes occurring during storage. Rapid decrease was noted in the water extractable nitrogen and salt soluble nitrogen fractions. Samples of frozen sole fish remained in acceptable condition for 20 weeks.
Resumo:
The study showed that less initial moisture with high salt content will be the best condition for enhanced storage life of dehydrated salt mince. Between sample I (10% salt per meat weight) and sample II (15% salt per meat weight) the latter was comparatively better in colour, odour and longer shelf-life. At room temperature the dehydrated salt mince has not showed any increase in total bacterial count. It is also found that the storage life of the salt mince can be enhanced to a significant extent by lowering the moisture content to below 10% and increasing the salt content to above 30%. Peroxide value, free fatty acid value, total volatile nitrogen and trimethylamine registered gradual increase during storage at room temperature for all the three samples. Among the three samples, the sample treated with 0.1% citric acid and 0.125% butylated hydroxy anisole was comparatively better in appearance and showed less rancidity as indicated by TBA values, up to a period of 15 weeks and thereafter all the three samples were almost similar in storage characteristics. Hence, the treatment with citric acid and B.H.A. has apparently not much significance in improving shelf-life and quality of salted dehydrated fish mince.
Resumo:
The ice-storage characteristics of Catla catla and Labeo fimbriatus are reported. Muscle pH, moisture, total volatile nitrogen, alpha amino nitrogen and peroxide value and also the changes in total bacterial count are studied. C. catla and L. fimbriatus both could be stored in ice for 18 days.
Resumo:
The physical-chemical characteristics of any aquatic ecosystem include pH, conductivity, and temperature, water transparency, nutrient and the chlorophyll-a levels. Physical and chemical factors of any ecosystem determine the type and quality of flora present in it and these forms the basis on which the system operates. The elements required in largest amounts for plant productions are carbon, phosphorus, nitrogen, and silicon, which is important for diatoms as a major component of the cell wall. Nutrients may limit algal productivity in the tropics despite the high temperature there allowing rapid nutrient recycling. Nutrients most likely to be limiting African lakes are nitrogen (Talling & Talling 1965; Moss 1969; Lehman & Branstrator 1993, 1994) and phosphorus (Melack.et al l982; Kalff 1983) while silicon may limit diatom growth (Hecky & Kilham 1988). The objective of the study is to investigate the impact of physical-chemical characteristics on the distribution and abundance of organisms in the major aquatic ecosystems.
Resumo:
This report will be of substantial value to water managers in developing the St. Johns River as a multiple resource. Evaluation of the capacity of the river to accept pollutants without adversely affecting other uses requires detailed data of flow and chemical characteristics and an understanding of how they interact. (66 page document)
Resumo:
Population characteristics of largemouth bass ( Micropterus salmoides L.) including growth, body condition (relative weight), survival, and egg production were examined in relation to abundance of submersed aquatic vegetation (SAV) coverage (primarily hydrilla [ Hydrilla verticillata L.f. Royle]) in three embayments of Lake Seminole, GA, and compared to a previous study conducted in 1998. (PDF has 8 pages.)
Resumo:
Fish collections under varying ecological conditions were made by trawling and seining, monthly and quarterly in depths of <1 m to depths of 3 m of the Florida Bay portion of Everglades National Park, Florida. From May 1973 through September 1976, a total of 182,530 fishes representing 128 species and 50 families were taken at 27 stations. An additional 21 species were identified from sportfish-creel surveys and supplemental observations. Most of the species collected were juveniles of species that occur as adults in the Florida Bay creel census survey, or were small species that were seasonal residents. Marked temporal and spatial abundance of the catches was observed. The greatest numbers and biomass of the fishes occurred in the wet season (summer/fall), whereas lowest numbers and biomass appeared during the dry season (winter/spring) The greatest abundance and diversity of fishes was found in western Florida Bay followed by eastern and central Bay regions respectively. Overall, five species comprised 75% of the numerical total while eleven species made up 75% of the total biomass. Collections were dominated numerically by anchovies (Engraulidae), especially Anchoa mitchilli, in western Florida Bay. Mojarras (Gerridae), mostly silver jenny Eucinostomus gula, and porgies (Sparidae), especially pinfish Lagodon rhomboides, dominated numerically in central and eastern portions of the Bay, respectively. Except for salinity, other measured physico-chemical parameters (water temperature, pH, dissolved oxygen, and turbidity) showed no variation beyond ranges considered normal for shallow, tropical marine environments. Salinity varied from 0 to 66 ppt near the mainland. Nearshore hypersaline conditions (>45 ppt) persisted for nearly 2 years during the 1974 - 1975 severe drought period. Significant reductions in fish abundance/diversity were observed in relation to hypersaline conditions. Bay-wide macrobenthic communities were mapped (presence/absence) and were primarily comprised of turtle grass (Thalassia), shoalgrass [(Diplanthera = (Halodule)], and/or green algae Penicillus. Seasonal dieoff of seagrasses was observed in north-central Florida Bay. (PDF contains 107 pages)
Resumo:
The status of the Gulf menhaden, Brevoortia patronus, fishery was assessed with purse-seine landings data from 1946 to 1997 and port sampling data from 1964 to 1997. These data were analyzed to determine growth rates, biological reference points for fi shing mortality from yield per recruit and maximum spawning potential analyses, spawner-recruit relationships, and maximum sustainable yield (MSY). The separable virtual population approach was used for the period 1976–97 (augmented by earlier analyses for 1964–75) to obtain point estimates of stock size, recruits to age 1, spawning stock size, and fishing mortality rates. Exploitation rates for age-1 fi sh ranged between 11% and 45%, for age-2 fi sh between 32% and 72%, and for age-3 fi sh between 32% and 76%. Biological reference points from yield per recruit (F0.1: 1.5–2.5/yr) and spawning potential ratio (F20: 1.3–1.9/yr and F30: 0.8–1.2/yr) were obtained for comparison with recent estimates of F (0.6–0.8/yr). Recent spawning stock estimates (as biomass or eggs) are above the long-term average, while recent recruits to age 1 are comparable to the long-term average. Parameters from Ricker-type spawner-recruit relations were estimated, although considerable unexplained variability remained. Recent survival to age-1 recruitment has generally been below that expected based on the Ricker spawner-recruit relation. Estimates of long-term MSY from PRODFIT and ASPIC estimation of production model ranged between 717,000 t and 753,000 t, respectively. Declines in landings between 1988 and 1992 raised concerns about the status of the Gulf menhaden stock. Landings have fl uctuated without trend since 1992, averaging about 571,000 t. However, Gulf menhaden are short lived and highly fecund. Thus, variation in recruitment to age 1, largely mediated by environmental conditions, infl uences fi shing success over the next two years (as age-1 and age-2 fi sh). Comparisons of recent estimates of fi shing mortality to biological reference points do not suggest overfishing. (PDF file contains 22 pages.)
Resumo:
The status of the gulf menhaden, Brevoortia patronus, fishery was assessed with purseseine landing data from 1946 to 1992 and port sampling data from 1964 to 1992. These data were analyzed to determine growth rates, biological reference points for fishing mortality from yield per recruit and maximum spawning potential analyses, spawner-recruit relationships, and maximum sustainable yield (MSY). Virtual population approaches were used to obtain point estimates of stock size, recruits to age I, spawning stock size, and fishing mortality rates. Exploitation rates ranged between 14% and 45% for age-1 fish, between 30% and 72% for age-2 fish, and between 36% and 71% for age-3 fish. Biological reference points from yield per recruit (FO. I: 0.7-0.9 yr-1) and maximum spawning potential (F20: 1.62.9 yr-l and F30: 1.0-2.1 yr-1) were obtained for comparison with recent estimates of F (0.4-0.8 yr-l). Parameters from Ricker-type spawner-recruit relations were estimated, although considerable unexplained variability remained. Estimates of long-term MSY from fits of the generalized production model ranged between 664,000 metric tons (t) and 897,000 t. Declines in landings since 1988 have raised concerns about the status of the gulf menhaden stock. However, gulf menhaden are short lived and highly fecund. Thus, variation in recruitment to age 1 largely mediated by environmental conditions influences fishing success over the next two years (as age-1 and age-2 fish). Comparisons of recent estimates of fishing mortality to biological reference points do not suggest overfishing. (PDF file contains 26 pages.)