68 resultados para Oil-contaminated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial canning of oil sardine (Sardinella longiceps) in India is a relatively new procedure. Although 7 firms are engaged in canning this compares poorly with the abundance of the fish. There are often wide variations in the quality of the canned fish and important chemical and physical variations occur in the product once canned. A description of the canning process is given, and production figures compared to those of other countries. Production figures for 1965 to 1969 are given. These show that production increased from 1.2 to 1.5 million cans, but that there was a peak in 1967 when 3.2 million can s were produced. Exports of canned marine fish by country, and production of caned sardine by country from 1965 to 1970 are tabulated. The types of containers used and the feasibility of exporting canned fish are considered. Finally, the preparation of cured and smoked products is discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The author reviews the advances in the oil and meal industries related to the oil sardine fishery (Sardinella longiceps) since the 1920s. Data on the production of by-produced produced in Kerala over the period 1964- 69 are tabulated. Details of the properties of the commercial oil are given, and the values compared to those for other similar oils. The use of oil sardine for industrial purposes - the oil has been used to cure leather, temper metals and as fungicides or insecticides - and the production of fish meal and fish protein concentrate is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and economic process for canning of oil sardine (Sardinella longiceps) in its own juice having very good organoleptic characteristics has been developed. The process consists in dipping eviscerated, scaled and cleaned fish in brine containing potash alum and citric acid, packing in cans, exhausting and seaming without addition of any filling medium and heat processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canning operations suitable for packing mackerel (Rastrelliger kanagurta) in the form of skinless and boneless fillets in oil were studied and the process standardised. The technique of lye peeling for skin removal could be successfully applied. The storage life of the final product was tested over a period of one year and found to be quite comparable to other similar fish products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An antiserum was raised in a rabbit against 0 panel red cells of mackerel. The erythrocytes of oil sardine and mackerel were tested against human blood typing sera anti A and B and also the test serum of rabbit which revealed the presence of antigens A and B. In addition, an antigen common to both the fishes and human A, B and 0 panel red cells was noted but not identifiable. The blood group B did not manifest itself clearly either in oil sardine or mackerel. The blood groups A, AB and 0 indicated the existence of genetically different groups of oil sardine and mackerel. Isoagglutinin tests revealed the presence of a reciprocal relationship with antigens A and B in both these fishes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrophoresis of eye lens proteins of oil sardine and mackerel showed separation of proteins into three and four components, indicating the heterogeneous nature of the population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil sardine blood tests against human typing sera indicated A-positive, A-negative and B-negative. The blood of mackerel is antigenically negative both for A and B. Electrophoretic studies on serum proteins revealed the existence of genetica1ly different groups of oil sardine and mackerel on the south-west coast of India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of preparation of smoke cured fillets of oil sardine is described. Various procedural steps like brining, smoking, packaging etc. have been described and the shelf life assessed. Sodium propionate treatment is recommended to enhance storage life; BHA to control rancidity; and thermal treatment to overcome the insect infestation. The product has good consumer appeal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The native flora of oil sardine and mackerel consisting of Pseudomonas spp; Moraxella spp., Acinetobacter spp. and Vibrio spp. underwent significant changes during ice storage. At the time of spoilage, Pseudomonas spp. were predominant. CTC treatment significantly reduced the Pseudomonas spp. in the initial stages of storage; but later Pseudomonas spp. reasserted and constituted the bulk of the spoilage flora. In prawn, the native flora was comprised of Pseudomonas spp., Acinetobacter spp., Moraxella spp. and Vibrio spp. At the time of spoilage a heterogeneous flora, consisting of Pseudomonas spp; Moraxella spp. and Acinetobacter spp. predominated. CTC treatment significantly changed the flora of prawns. During spoilage, Pseudomonas predominated in CTC treated prawns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The native flora of fresh oil sardine and mackerel consisted mainly of Pseudomonas spp., Moraxella spp., Acinetobacter spp. and Vibrio spp. During spoilage in ice, nearly 75% of their bacterial flora belonged to Pseudomonas spp. alone. But Na sub(2) EDTA treatment reduced the proportion of Pseudomonas spp. considerably and the major bacterial groups at the time of spoilage were Moraxella spp. and Acinetobacter spp. In the case of fresh prawn, the native flora was constituted by Pseudomonas spp., Moraxella spp., Acinetobacter spp. and Vibrio spp. At the time of spoilage of prawn in ice, Moraxella spp. and Acinetobacter spp. predominated, together constituting 74% of the total population. Na sub(2) EDTA treatment did not alter significantly the spoilage flora of prawns. Moraxella spp. and Acinetobacter spp. accounted for 86% of the spoilage flora in ice storage of Na sub(2) EDTA treated prawns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The total aerobic viable plate counts (TPCs) of skin, gills and intestine of newly caught oil sardine (Sardinella longiceps) and Indian mackerel ( Rastrelliger kanagurta) at four different temperatures, namely 36 ± 1°C, 28 ± 2°C (RT), 8 ± 1°C and 1 ±1°C, are reported. The total plate count at RT of the skin of oil sardine and Indian mackerel were in the range of l0 super(3) to 10 super(7) and 10 super(4) to 10 super(6) per cm², that of gills in the range of 10 super(5) to 10 super(9) and 10 super(4) to 10 super(8) per g and that intestine in the range of 10 super(5) to 10 sueper(9) and 10 super(5) to 10 super(8) per g respectively. The TPCs were markedly affected by the incubation temperature. Incubation at 28 ± 2°C gave the highest count; at 36 ± 1°C and 8 ± 1°C, the counts decreased by nearly 1-2 log cycles from that at RT. Incubation at 1 ± 1°C registered the lowest count. The peak values for bacterial counts of these fishes occurred at different periods of the year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

80% of the flora of skin, gills and intestines of oil sardine and mackerel at isolation temperature 28 ± 2°C consisted of Gram negative asporogenous rods or cocci, belonging to the genera Vibrio, Pseudomonas, Moraxella, Acinetobacter and Flavobacteria/Cytophaga. Nearly 10% of the flora was constituted by Gram positives, Micrococcus and Arthrobacter. Incubation temperature of 36 ± 1°C recovered more Vibrio spp. and Gram positives, while at lower temperatures of 8 ± 1°C and 1 ± 1°C, more Pseudomonas, Acinetobacter and Moraxella spp. were recovered. Significant changes with respect to season were observed in the relative distribution of different genera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fresh oil sardine, mackerel and prawn were dipped in 0.1% and 1% solutions of Na sub(2)EDTA, and stored in ice. Their storage-life was assessed by bacteriological, chemical and sensory methods. Even though EDTA treatment controlled the increase in bacterial counts and reduced TMA and TVBN production in oil sardine and mackerel, the consequent beneficial effect was not realised because of the deterioration of fat in these fishes, leading to rancidity. But, for prawn stored in ice, a dip in 1% solution of Na sub(2)EDTA enhanced the shelf-life by at least 8 days over the untreated control. EDTA absorbed by the muscle of fish and prawn during dip in Na sub(2)EDTA solution is not completely removed during their iced storage for 25 days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil sardines in prime condition were chilled on board. Two lots were chilled in CSW (samples C & CI), one lot ice (sample I) and a fourth lot was left un-iced on deck (sample AI). Sample AI was iced after landing and sample CI was taken out of the chilled seawater and. iced. All the four samples were kept in a chilled room for storage studies. Sample C, chilled and stored in CSW, recorded a gradual gain in weight and an increase in salt content of the muscle. Presence of salt did not seem to cause any excessive protein denaturation. Salt extractability decreased at a gradual rate in all cases. Presence of salt seemed to wield no noticeable influence on lipid hydrolysis and subsequent peroxidation. Results of chemical and sensory evaluations highlight this. Holding sardines in CSW gave a product of excellent quality for the first four to five days of storage. Beyond the fifth day of storage quality deteriorated rapidly and there was no noticeable superiority for this sample (sample C) over the on board iced fish. This was evident in the sensory evaluation as well. However, a storage life of five days in a readily acceptable state is sufficient for the fish to be disposed in the market at a premium sale price over other landings of the same species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shelf-life of frozen oil sardine (Sardinella longiceps) can be improved by preserving the fish immediately after catch in chilled sea water before freezing. Delayed icing caused considerable deterioration in quality and reduced frozen shelf-life. Oil sardine preserved in chilled sea water were found to be suitable for freezing up to 5 days whereas iced samples could be frozen only up to 2 days.