32 resultados para motivational enhancement therapy
Resumo:
Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.
Resumo:
Increasing interest in the use of stock enhancement as a management tool necessitates a better understanding of the relative costs and benefits of alternative release strategies. We present a relatively simple model coupling ecology and economic costs to make inferences about optimal release scenarios for summer flounder (Paralichthys dentatus), a subject of stock enhancement interest in North Carolina. The model, parameterized from mark-recapture experiments, predicts optimal release scenarios from both survival and economic standpoints for varyious dates-of-release, sizes-at-release, and numbers of fish released. Although most stock enhancement efforts involve the release of relatively small fish, the model suggests that optimal results (maximum survival and minimum costs) will be obtained when relatively large fish (75–80 mm total length) are released early in the nursery season (April). We investigated the sensitivity of model predictions to violations of the assumption of density-independent mortality by including density-mortality relationships based on weak and strong type-2 and type-3 predator functional responses (resulting in depensatory mortality at elevated densities). Depending on postrelease density, density-mortality relationships included in the model considerably affect predicted postrelease survival and economic costs associated with enhancement efforts, but do not alter the release scenario (i.e. combination of release variables) that produces optimal results. Predicted (from model output) declines in flounder over time most closely match declines observed in replicate field sites when mortality in the model is density-independent or governed by a weak type-3 functional response. The model provides an example of a relatively easy-to-develop predictive tool with which to make inferences about the ecological and economic potential of stock enhancement of summer flounder and provides a template for model creation for additional species that are subjects of stock enhancement interest, but for which limited empirical data exist.
Resumo:
On-farm research on enhancement of P. monodon production through water quality management was carried out in five ghers of Paikgacha, Khulna. Based on the prevailing condition of the ghers, lime in the form of CaCO(sub 3), urea and TSP were used as the major inputs to minimize the soil-water acidity and to ensure the availability of natural food particles in the water bodies. Exchange of water at required level also practiced for the qualitative improvement of culture water. Ghers of varying sizes showed that water quality management and fertilization have a positive impact on production performance of P. monodon (61.59% increment) that yielded an average production of 385.43 kg/ha/crop against the present traditional rate of 238.50 kg/ha/year.
Resumo:
Freshwater giant prawn, Macrobrachium rosenbergii fry produced during late season can not withstand low temperature thus the prawn culture programme during winter is hampered. To overcome this problem, late season (August-September) prawn juveniles (0.9-6.8 g) were stocked at a density of 1.43 to 3.57/square meter in 350-476 square-meter ponds in Pabna and Mymensingh districts during October 2000 and cultured till May 2001. Monthly average water temperature during the winter months (December-February) varied from 16 to 22 °C and gradually increased to 32 °C in May. The prawn fry showed fast growth rate and attained an average weight of 60-70 g within eight months including three winter months. Growth compensation was observed during summer months. Survival rate was 60-79%. After extrapolation of the present growth rate more than 1,600 kg/ha production can be achieved in better-managed ponds. Extrapolated cost of production was Tk. 268,000 and 200,000 Tk./ha in two best ponds, sale value was Tk. 644,9146 [sic] and 528,466 and gross profit was Tk. 376,000-410,000, suggesting a higher economic feasibility of farming freshwater prawn with over-wintered juveniles.
Resumo:
A reservoir of 70 acres was portioned by dikes into four manageable big ponds to get more production of fishes at Basurhat, Noakhali, Bangladesh under the supervision of local community through a society of 40 people ownership. Pangus (Pangasius hypophthalmus) @ 20,000/acre, and then fry and fingerlings of different types of fishes such as catla (Catla catla), rohu (Labeo rohita), mrigal (Cirrhina mrigala), grass carp (Ctenophmyngodon idella), bighead (Aristichthys nobili), silver carp (Hypophthalmichthys molitrix), common carp (Cyprinus cmpio) and rajpunti (Puntius gonionatus) @ 500/acre were stocked. Feed containing 25% protein was used two times daily and feed was adjusted fortnightly. After 8 months, all the fishes were weighed 0.80-2.10 kg except rajpunti (150-200 g) and tilapia (150-220 g), and a total of 25 ton of fish was harvested which was five times higher than the previous production under signal ownership. The production of fishes were increased after partitioning the lake with dikes due to proper management and control.
Resumo:
Stock enhancement has been recognized as one of the essential strategies that can sustain and increase the resources of coastal fisheries. It has been practiced for over a century, with more than 100 species released to date in worldwide programs. Among the countries in Asia, Japan and Taiwan have already established the practice of stock enhancement. Details are given of the main species, number or seedstock produced and released in 1996 in Japan. The species released by the Taiwan Fisheries Research Institute 1976-1995 are also described.