2 resultados para motivational enhancement therapy

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement.

Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes.

The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an “enhancement factor” to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth.

Part II

Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, \lambda_{R}, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapy employing epidural electrostimulation holds great potential for improving therapy for patients with spinal cord injury (SCI) (Harkema et al., 2011). Further promising results from combined therapies using electrostimulation have also been recently obtained (e.g., van den Brand et al., 2012). The devices being developed to deliver the stimulation are highly flexible, capable of delivering any individual stimulus among a combinatorially large set of stimuli (Gad et al., 2013). While this extreme flexibility is very useful for ensuring that the device can deliver an appropriate stimulus, the challenge of choosing good stimuli is quite substantial, even for expert human experimenters. To develop a fully implantable, autonomous device which can provide useful therapy, it is necessary to design an algorithmic method for choosing the stimulus parameters. Such a method can be used in a clinical setting, by caregivers who are not experts in the neurostimulator's use, and to allow the system to adapt autonomously between visits to the clinic. To create such an algorithm, this dissertation pursues the general class of active learning algorithms that includes Gaussian Process Upper Confidence Bound (GP-UCB, Srinivas et al., 2010), developing the Gaussian Process Batch Upper Confidence Bound (GP-BUCB, Desautels et al., 2012) and Gaussian Process Adaptive Upper Confidence Bound (GP-AUCB) algorithms. This dissertation develops new theoretical bounds for the performance of these and similar algorithms, empirically assesses these algorithms against a number of competitors in simulation, and applies a variant of the GP-BUCB algorithm in closed-loop to control SCI therapy via epidural electrostimulation in four live rats. The algorithm was tasked with maximizing the amplitude of evoked potentials in the rats' left tibialis anterior muscle. These experiments show that the algorithm is capable of directing these experiments sensibly, finding effective stimuli in all four animals. Further, in direct competition with an expert human experimenter, the algorithm produced superior performance in terms of average reward and comparable or superior performance in terms of maximum reward. These results indicate that variants of GP-BUCB may be suitable for autonomously directing SCI therapy.