17 resultados para sensory acceptability
Resumo:
Black mouth croaker (Atrobucca nibe) is considered as a new valuable fish stock in the Oman Sea. In this study, surimi was manufactured from nonmarket size of the fish, manually and different cryoprotectant agents were added to the surimi. Finally changes in physiochemical, microbiological and sensory quality, characteristics of the surimi and kamaboko gel samples were assessed during 6 months at freezing storage (-18ºC). Surimi samples with the addition of Iranian tragacanth gum (TG), xanthan gum (XG), chitosan (CS) and whey protein concentrate (WPC) at 1% (w/w) were prepared to evaluate their impacts as a cryoprotectant on the surimi, individually. The results showed that the whiteness and lightness indexes in all surimi samples were gradually decreased during frozen storage. This trend of decreasing was more intensity in the control sample from 61.08±0.131 to 54.21±0.067 was recorded (p<0.05). Water holding capacity (WHC) in all treatments was decreased during 6 months. The lowest WHC (g/g) was obtained in the surimi without cryoprotectants and maximum WHC was measured in Tcs and Twpc samples, respectively (p<0.05). The lowest breaking force was calculated in Txg (166.00±22.627 g) and Tc (271.50±263.16 g) during 6 months at frozen storage, respectively (p<0.05), while Twpc treatment with slight variations showed the highest breaking force (p<0.05). Also, the lowest gel strength was obtained in Txg (68.22±6.740 g.cm) after 6 month of frozen storage (p<0.05). All Kamaboko surimi gels texture profile analysis parameters decreaced with increasing shelf life. This decreasing trend in the control sample was more severe. Floding results were reduced in all samples during storage (p<0.05). The best protective results probably were obtained in WPC, chitosan and commercial cryoprotectant agents, respectively due to protein stabilization of myofibrillar proteins and the protein-protein network structure, leading to the formation of surimi gel with strong textural properties during frozen conditions. The average number of surimi polygonal structures were significantly decreased (number per mm2) and their area were significantly increased (μm2) in all treatments (p<0.05). With increasing storage time, moisture, protein contents and pH were decreaced. Maximun TVB-N index was calculated in Tc (7.93±0.400 mg/100g) and Txg (7.88±0.477), respectively (p<0.05). TBRAs index was increased in all treatments during frozen storage, while this trend was reached in maximum value in Tc (p<0.05). Sensory evaluation of the fish finger quality characteristics (color, odor, texture and overall acceptability) preapare from frozen black mouth croaker surimi was decreaced during 6 month frozen storage. After the period of frozen storage the highest quality scores were measured in Twpc, Tcs and Tcc samples, respectively (p<0.05). In this study, coliform bacteria were not found in all treatments during frozen storage. The surimi sample containing chitosan showed lower mesophilic and psychrotropic bacteria (log cfu/g) than other treatments during frozen storage (p<0.05). Salt-soluble proteins extractions of all treatments were decreased during frozen storage. This decreacing trend was highest in Tcs (45.74±0.176%) and lowest in Tc treatments after 6 month of frozen storage (29.92±0.224%) (p<0.05). Although commercial cryoprotectant agents were successful in limiting the denaturation of proteins but sugar contents were not accepted for diabetics or those who disagree with the sweet taste and high calorie food. Hence, commercial cryoprotectant agents can be replaced with whey protein concentrate and chitosan at 1% level (w/w) consider that they were showed proper protection of the surimi myofibrillar proteins during storage.
Resumo:
Lionfish, Pterois volitans and P. miles, are native to the Indo-Pacific and have recently invaded the Western Atlantic Ocean. Strategies for control of this invasion have included limited removal programs and promotion of lionfish consumption at both local and commercial scales. We demonstrate that lionfish meat contains higher levels of healthy n-3 fatty acids than some frequently consumed native marine fish species. Mean lionfish fillet yield was 30.5% of the total body wet weight, a value that is similar to that of some grouper and porgy species. A sensory evaluation indicated that lionfish meet the acceptability threshold of most consumers.
Resumo:
The quality of raw and processed fishery products depend on several factors like physiological conditions at the time of capture, morphological differences, rigor mortis, species, rate of icing and subsequent storage conditions. Sensory evaluation is still the most reliable method for evaluation of the freshness of raw processed fishery products. Sophisticated methods like Intelectron fish tester, cell fragility technique and chemical and bacteriological methods like estimation of trimethylamine, hypoxanthine, carbonyl compounds, volatile acid and total bacterial count have no doubt been developed for accessing the spoilage in fish products.
Resumo:
Methods for improving the colour and flavour of canned mackerel tuna (Euthynnus affinis) and modifications in the canning process are reported.
Resumo:
An experimental procedure along with a method of analysis to judge the suitability of an individual to be included in a taste panel is described. The procedure is based on comparison of the organoleptic scores assigned by the individual to pairs of fish samples whose qualities are known and a set of physical measurements of the same samples. Fisher's Exact Probability Test provides a criterion for the judgement.
Resumo:
Commercial samples of frozen shrimp of different styles of presentation and size grades were tested for sensory, physical (cooked yield and pH) and biochemical characteristics (moisture, total nitrogen, water extractable nitrogen, nonprotein nitrogen, alpha amino nitrogen, total volatile nitrogen and trimethylamine nitrogen). The test results are compared and correlated. The order of preference of the samples were HL>PUD>P & D. There was significant correlation between sensory score of cooked sample and WEN, NPN and ∞ – NHsub(2)-N values. TVN and TMA-N did not exhibit any correlation with sensory score. It is inferred that in quality measurement of frozen shrimps of commerce the quantity of water soluble components and the total dry matter can be used to support the sensory test results.
Resumo:
The combined effect of radiation and refrigeration on the shelf life of hilsa, Tanualosa ilisha was studied by monitoring the microbiological, chemical and sensory changes of unirradiated and irradiated fish samples using low dose irradiation, doses of 300 krad, 600 krad and 900 krad. Irradiation (900 krad) dramatically reduced population of bacteria, namely total viable counts 48.850cfu per gm for unirradiated, 31.850cfu per gm and 19.600cfu per gm of 300 krad and 600 krad, respectively. The effect was more pronounced at the higher dose (900 krad), total viable count were 14.100cfu per gm. Another microbial indicator total mould counts (TMC) was 8.750cfu per gm, 6.350cfu per gm, and 19.600cfu per gm for 300 krad and 600 krad, respectively. The effect was more pronounced at the higher dose (900 krad) where total viable counts were 14,100cfu per gm. Total volatile nitrogen values increased slowly attaining a value of 101.02mgN per 100gm for unirradiated T. ilisha during refrigerated storage, whereas for irradiated fish, lower values of 71.13, 59.33 and 47.03mgN per 100gm muscle were recorded. Sensory evaluation showed a good correlation with bacterial populations on the basis of overall acceptability scores.
Resumo:
Gamma radiation (3, 6 and 9 kGy) in combination with low temperature (-20°C) were applied to retain the quality and shelf-life of shrimp, Penaeus monodon for a longer period. The quality was assessed by monitoring the chemical (TVN, TMA) and sensory changes in irradiated and non-irradiated (control) samples. Among chemical indicators of spoilage, total volatile nitrogen (TVN) values for irradiated shrimps were found to be 2.26, 2.18 and 1.57 mg N/100g of sample at 3, 6 and 9 kGy respectively after 90 days whereas for non-irradiated samples it was found 2.45mg N/100 g of sample. Trimethylamine (TMA) value for non-irradiated samples after 90 days were found 2.30mg N/100 g sample whereas that for irradiated shrimps at 3, 6 and 9 kGy were found to be 2.10, 2.08 and 1.98 mg N/100 g sample respectively. The sensory scores of control sample were gradually decreased with the progress of storage period. From this study, it was clear that gamma radiation in combination with low temperature showed shelf-life extension (90 days) in each dose of radiation used but during the use of 9 kGy radiation, P. monodon showed best quality.
Resumo:
Nisin is a widely used naturally occurring antimicrobial effective against many pathogenic and spoilage microorganisms. It has been proposed that reduced efficacy of nisin in foods can be improved by technologies such as encapsulation to protect it from interferences by food matrix components. The aim of this study was using of spray dried encapsulated nisin with zein in concentration of (0.15 and 0.25 g/kg) and sodium citrate (1.5 and 2.5%) and treatments with both of them to extent the shelf life of filleted trouts packaged by Modified Atmosphere Packaging (45% CO2, 50% N2 ,5% O2) and stored at 4±1 °C for 20 days. Furthermore, to evaluate the antimicrobial efficiency of encapsulated nisin and soudium citrate the trouts fillets was inoculated with Staphylococcus aureus as an index pathogenic bacteria. Assessment of chemical spoilage indexes such as (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) , microbial parameters (Total Plate Count, Psychrotrophic count, Lactic acid bacteria count), Staphylococcus aureus cont in treatments which were inoculated with 5 logcfu/g of this bacteria and sensory evaluation of fillets including (smell, color, texture and total acceptability) was carried out in days of 0, 4, 8, 12, 16 and 20. The results revealed that treatment with both exposure of nisin and sodium citrate showed significantly lower chemical spoilage indexes in comparison with controls (vaccum packed and MAP) (P<0.05). Furthermore, (nisin 0.25 g/kg sodium citrate 2.5%) treatment which was exposed to the maximal level used of both materials was significantly the lowest treatment with (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) of 9.95 (meq O2/kg) , 1.55 (mgMA/kg), 29.65 (mgN/100g) and 6.65 , respectively and according to the maximal recommended level of this indices , shelf life of fillets in this treatment was esstimated 20 days.The control (vaccum packed) treatment was significantly the highest treatment with (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) of 15.17 (meq O2/kg), 3.03 (mgMA/kg), 38.4 (mgN/100g) and 6.95 , respectively and according to the maximal recommended level of this indices , shelf life of fillets in this treatment was estimated 11 days. Also, in microbial point of view (nisin 0.25 g/kg- sodium citrate 2.5%) treatment was the lowest treatment with Total Plate Count, Psychrotrophic count, Lactic acid bacteria count and Staphylococcus aureus count of 6.7, 6.83, 5.25 and 6.04 logcfu/g respectively, and conrol (vaccum packed) treatment was the highest treatment with 9.15, 9.41, 7.7 and 9.01 logcfu/g respectively. According to the lower results of chemical and microbial indices and higher sensory evaluated scores assessed in this research for encapsulated nisin in comparison with free nisin , it was concluded that encapsulation of nisin with zein capsules may improve the efficiency of nisin. The measuremented values of Mass yield, Total solids content of capsules, Encapsulation efficiency, In vitro release kinetics in 200 hour for encapsulated nisin in this study was 49.89, 62, 98.31 and 69% respectively and Encapsulated particle size was lower than 674.21 μm for 90% of particles. As a consequence, nisin , in particular encapsulated nisin, and sodium citrate alone or together with and Modified Atmosphere packaging might be considered as effective tools in preventing the quality degradation of the fillets, resulting in an extension of their shelf life.
Resumo:
The present study aimed production of a new product with various texture and sensory properties in chase of the impetus for increasing human consumption considering suitable resources of Kilka fish in Caspian Sea. Following deheading, gutting, and brining, common Kilka were battered in two different formulations, i.e. simple batter and tempura batter, via automated predusting machinery and then, they were fried through flash frying for 30 seconds at 170°C in sunflower oil after they were breaded with bread crumbs flour. The products were subjected to continuous freezing at -40°C and were kept at -18°C in cold storage for four months once they were packed. Chemical composition (protein, fat, moisture, and ash), fatty acid profiles (29 fatty acids), chemical indices of spoilage (peroxide value, thiobarbituric acid, free fatty acids, and volatile nitrogen), and microbial properties (total bacteria count and coliform count) were compared in fresh and breaded Kilka at various times before frying (raw breaded Kilka), after frying (zero-phase), and in various months of frozen storage (phases 1, 2, 3, and 4). Organoleptic properties of breaded Kilka (i.e. odor, taste, texture, crispiness, cohesiveness of batter) and general acceptability in the phases 0, 1, 2, 3, and 4 were evaluated. The results obtained from chemical composition and fatty acid profiles in common Kilka denoted that MUFA, PUFA, and SFA were estimated to be 36.96, 32.85, and 29.12 g / 100g lipid, respectively. Levels of ù-3 and ù-6 were 7.6 and 1.12 g / 100 gr lipid, respectively. Docosahexaonoic acid (20.79%) was the highest fatty acid in PUFA group. ù-3/ù-6 and PUFA/SFA ratios were 7.6 and 1.12, respectively. The high rates of the indices and high percentage of ù-3 fatty acid in common Kilka showed that the fish can be considered as invaluable nutritional and fishery resources and commonsensical consumption of the species may reduce the risk of cardiovascular diseases. Frying breaded Kilka affected overall fat and moisture contents so that moisture content in fried breaded Kilka decreased significantly compared to raw breaded Kilka, while it was absolutely reverse for fat content. Overall fat content in tempura batter treatment was significantly lower than that of simple batter treatment (P≤0.05). Presence of hydrocolloids, namely proteins, starch, gum, and other polysaccharides, in tempura batter may prohibit moisture evaporation and placement with oil during frying process in addition to boosting water holding capacity through confining water molecules. During frying process, fatty acids composition of breaded Kilka with various batters changed so that rates of some fatty acids such as Palmitic acid (C16:0), Stearic acid (C18:0), Oleic acid (C18:1 ù-9cis), and linoleic acid (C18:3 ù-3) increased considerably following frying; however, ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios (Polyan index) decreased significantly after frying. ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios in tempura batter treatment were higher than those of simple batter treatment which is an indicator of higher nutritional value of breaded Kilka with tempura batter. Significant elevations were found in peroxide, thiobarbituric acid, and free fatty acids in fried breaded Kilka samples compared to raw samples which points to fat oxidation during cooking process. Overall microorganism count and coliform count decreased following heating process. Both breaded Kilka samples were of high sanitation quality at zero-phase according to ICMSF Standard. The results acquired from organoleptic evaluation declared that odor, cohesiveness, and general acceptability indices, among others, had significant differences between the treatments (P≤0.05). In all evaluated properties, breaded Kilka with tempura batter in different phases gained higher scores than breaded Kilka with simple batter. During cold storage of various treatments of breaded Kilka, total lipid content, PUFA, MUFA, ù-3, ù- 3/ù-6, PUFA/SFA, Polyen index decreased significantly. The mentioned reductions in addition to significant elevation of spoilage indices, namely peroxide, thiobarbituric acid, and free fatty acids, during frozen storage, indicate to oxidation and enzymatic mechanism activity during frozen storage of breaded Kilka. Considering sensory evaluation at the end of the fourth month and TVB-N contents exceeded eligible rate in the fourth month, shelf life of the products during frozen storage was set to be three months at -18°C. The results obtained from statistical tests indicate to better quality of breaded Kilka processed with tempura batter compared to simple batter in terms of organoleptic evaluation, spoilage indices, and high quality of fat in various sampling phases.
Resumo:
In this study, quality of fresh, slow frozen and quick frozen tilapia fillets and its changes during storage at -18C° were investigated. For preparation the samples, fresh tilapia fillets were frozen by slow and quick frozen methods. Slow frozen samples were prepared by storing the packed fillets directly in the -18 C°. The sprila freezing tunle with -30C° was also used for preparation the quick frozen sample. The quick frozen samples were then stored at -18C°for six months. Proximate composition, fatty acid profiles, TBA, PV, TVN, Total cuont, Drip loss, and sensory evaluation of the samples were determined in every month. Scanning Electron Microscopy (SEM) was used for study on the effects of the frozen condition on the microstructure of the fillets. Results indicated that two different frozen methods had significantly different effects on the quality of the fillets. Most of the proximate composition (protein, moistre and fat) reduced during the storage. Quick frozen filets had significantly (P<0.05) lower reduction than slow frozen samples. All of the chemical quality indexes (PV, TBA, and TVN) increased during the storage as compered to the fresh samples. In these paramethers, the slow freezing had higher changes than quick freezing metods (P<0.05). The microbial properties of the samples showed decrese during the storage. Lower amont of total cuont was observed at the end of the storage time in the quick frozen samples than slow frozen once (P<0.05). The large changes in the fatty acid profiles of the sample were fond in all samples. During the storage SFA and MUF of the samples increased however, the PUFA decresed. A lower change was obseved in the quick frozen samples than slow frozen samples (P<0.05). Drip loss was increased in both frozen samples during the storage period. The percentage of the drip in the slow frozen samples was significantly higer than quick frozen samples (P<0.05). SEM micrographs were also showed that the chnges in the microstructur of the samples was different in the slow and frozen samples. Slow freezing methods had higher damge in the microstructure of the sample then quick freezing mathods. Sensory evaluation of the samples indicated that a better acceptability in the quick frozen samples than slow frozen sample (P<0.05).
Resumo:
Effects of different thawing method i.e. in a refrigerator, in water, at air ambient temperature and in a microwave oven on proximate, chemical (PV, TBA, FFA, TVB-N, SSP, FA), biochemical (pH, WHC,ThL), microbial (total viable, psychrotrophic, coliform, Shewanella and yeast-mould count) and sensory analysis were carried out on frozen whole Caspian sea Kutum (Rutilus frisii kutum) and Rainbow trout (Oncorhynchus mykiss) carcasses. The values of ash, protein, SSP, WHC, PUFA, PUFA/SFA. EPA+DHA/C16:0, pH, and microbial count of thawed samples decreased significantly while fat, PV, TBA, FFA, TVB-N, SFA and MUFA increased compared to the fresh fish (unfrozen) as control samples. Also, sensory evaluation all of thawed samples showed a significant (p<0.05) quality loss compared to the fresh fish as control samples. The lowest chemical and biochemical values as well as microbial growth were determined in water thawed samples. Therefore, based on this study thawing in water is most suitable for frozen whole rainbow trout.
Resumo:
Tilapia (Oreochromis spp.) consumption is limited due to its strong muddy odour and the difficulty of processing. In addition, consumption of tilapia is minimal in urban areas because of the low availability. There are no processed market products of tilapia available in Sri Lanka. Therefore, this study was designed to develop a new marinade for tilapia and to evaluate the shelf life of the product. Twelve different treatments of varying amounts of vinegar, salt, chili powder, white pepper and garlic powder were applied to filleted tilapia, and three best treatment combinations were selected using a sensory evaluation test. Processed tilapia was stored in the freezer at -4°C. Treated samples were subjected to evaluation of sensory profile: taste, odour, colour, texture and overall acceptability. Analysis of the shelf life was carried out by using the total plate count, faecal coliform test, acidity and pH at weekly intervals. Results revealed that the third treatment (vinegar 75 ml, salt 5 g, chili powder 5 g, white pepper 5 g and garlic powder 5 g) was best in terms of colour, texture, odour, taste and the overall acceptability according to the estimated medians (6, 6, 6 and 6.33 respectively). There was no significant difference between the first and the third treatment in terms of odour and overall acceptability. There was no significant difference between the three vacuum packed treatments for acidity and pH. Acidity and pH of the three treatments were at an acceptable level, which was below pH 5.3 and above 1.95% acidity. Average bacterial count was 10 colonies and 1.33x10 super(6) colonies respectively in vacuum packed treatments and bottled samples after one week. The acceptable level of bacterial colonies is 1.00x10 super(5). Vacuum packed treatments showed a one month shelf life. In conclusion, marinades can be developed from tilapia with a pleasant taste and acceptable texture.