3 resultados para roots

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to investigate to what extent the known theory of subdifferentiability and generic differentiability of convex functions defined on open sets can be carried out in the context of convex functions defined on not necessarily open sets. Among the main results obtained I would like to mention a Kenderov type theorem (the subdifferential at a generic point is contained in a sphere), a generic Gâteaux differentiability result in Banach spaces of class S and a generic Fréchet differentiability result in Asplund spaces. At least two methods can be used to prove these results: first, a direct one, and second, a more general one, based on the theory of monotone operators. Since this last theory was previously developed essentially for monotone operators defined on open sets, it was necessary to extend it to the context of monotone operators defined on a larger class of sets, our "quasi open" sets. This is done in Chapter III. As a matter of fact, most of these results have an even more general nature and have roots in the theory of minimal usco maps, as shown in Chapter II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let L be the algebra of all linear transformations on an n-dimensional vector space V over a field F and let A, B, ƐL. Let Ai+1 = AiB - BAi, i = 0, 1, 2,…, with A = Ao. Let fk (A, B; σ) = A2K+1 - σ1A2K-1 + σ2A2K-3 -… +(-1)KσKA1 where σ = (σ1, σ2,…, σK), σi belong to F and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that fn(A, B; σ) = 0 if σi is the ith elementary symmetric function of (β4- βs)2, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β4 are the characteristic roots of B. In this thesis we discuss relations involving fk(X, Y; σ) where X, Y Ɛ L and 1 ≤ k ˂ n. We show: 1. If F is infinite and if for each X Ɛ L there exists σ so that fk(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If F is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X1, X2…Xr belong to the radical of the algebra generated by A and B over F, where Xi has the form f2(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate L, if the characteristic of F does not divide n and if there exists σ so that fk(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of gk(w; σ) = w2K+1 - σ1w2K-1 + σ2w2K-3 - …. +(-1)K σKw over F. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are concerned with the class ∏n of nxn complex matrices A for which the Hermitian part H(A) = A+A*/2 is positive definite.

Various connections are established with other classes such as the stable, D-stable and dominant diagonal matrices. For instance it is proved that if there exist positive diagonal matrices D, E such that DAE is either row dominant or column dominant and has positive diagonal entries, then there is a positive diagonal F such that FA ϵ ∏n.

Powers are investigated and it is found that the only matrices A for which Am ϵ ∏n for all integers m are the Hermitian elements of ∏n. Products and sums are considered and criteria are developed for AB to be in ∏n.

Since ∏n n is closed under inversion, relations between H(A)-1 and H(A-1) are studied and a dichotomy observed between the real and complex cases. In the real case more can be said and the initial result is that for A ϵ ∏n, the difference H(adjA) - adjH(A) ≥ 0 always and is ˃ 0 if and only if S(A) = A-A*/2 has more than one pair of conjugate non-zero characteristic roots. This is refined to characterize real c for which cH(A-1) - H(A)-1 is positive definite.

The cramped (characteristic roots on an arc of less than 180°) unitary matrices are linked to ∏n and characterized in several ways via products of the form A -1A*.

Classical inequalities for Hermitian positive definite matrices are studied in ∏n and for Hadamard's inequality two types of generalizations are given. In the first a large subclass of ∏n in which the precise statement of Hadamardis inequality holds is isolated while in another large subclass its reverse is shown to hold. In the second Hadamard's inequality is weakened in such a way that it holds throughout ∏n. Both approaches contain the original Hadamard inequality as a special case.