13 resultados para invariant partition-functions
em CaltechTHESIS
Resumo:
We study some aspects of conformal field theory, wormhole physics and two-dimensional random surfaces. Inspite of being rather different, these topics serve as examples of the issues that are involved, both at high and low energy scales, in formulating a quantum theory of gravity. In conformal field theory we show that fusion and braiding properties can be used to determine the operator product coefficients of the non-diagonal Wess-Zumino-Witten models. In wormhole physics we show how Coleman's proposed probability distribution would result in wormholes determining the value of θQCD. We attempt such a calculation and find the most probable value of θQCD to be π. This hints at a potential conflict with nature. In random surfaces we explore the behaviour of conformal field theories coupled to gravity and calculate some partition functions and correlation functions. Our results throw some light on the transition that is believed to occur when the central charge of the matter theory gets larger than one.
Resumo:
This thesis is mainly concerned with the application of groups of transformations to differential equations and in particular with the connection between the group structure of a given equation and the existence of exact solutions and conservation laws. In this respect the Lie-Bäcklund groups of tangent transformations, particular cases of which are the Lie tangent and the Lie point groups, are extensively used.
In Chapter I we first review the classical results of Lie, Bäcklund and Bianchi as well as the more recent ones due mainly to Ovsjannikov. We then concentrate on the Lie-Bäcklund groups (or more precisely on the corresponding Lie-Bäcklund operators), as introduced by Ibragimov and Anderson, and prove some lemmas about them which are useful for the following chapters. Finally we introduce the concept of a conditionally admissible operator (as opposed to an admissible one) and show how this can be used to generate exact solutions.
In Chapter II we establish the group nature of all separable solutions and conserved quantities in classical mechanics by analyzing the group structure of the Hamilton-Jacobi equation. It is shown that consideration of only Lie point groups is insufficient. For this purpose a special type of Lie-Bäcklund groups, those equivalent to Lie tangent groups, is used. It is also shown how these generalized groups induce Lie point groups on Hamilton's equations. The generalization of the above results to any first order equation, where the dependent variable does not appear explicitly, is obvious. In the second part of this chapter we investigate admissible operators (or equivalently constants of motion) of the Hamilton-Jacobi equation with polynornial dependence on the momenta. The form of the most general constant of motion linear, quadratic and cubic in the momenta is explicitly found. Emphasis is given to the quadratic case, where the particular case of a fixed (say zero) energy state is also considered; it is shown that in the latter case additional symmetries may appear. Finally, some potentials of physical interest admitting higher symmetries are considered. These include potentials due to two centers and limiting cases thereof. The most general two-center potential admitting a quadratic constant of motion is obtained, as well as the corresponding invariant. Also some new cubic invariants are found.
In Chapter III we first establish the group nature of all separable solutions of any linear, homogeneous equation. We then concentrate on the Schrodinger equation and look for an algorithm which generates a quantum invariant from a classical one. The problem of an isomorphism between functions in classical observables and quantum observables is studied concretely and constructively. For functions at most quadratic in the momenta an isomorphism is possible which agrees with Weyl' s transform and which takes invariants into invariants. It is not possible to extend the isomorphism indefinitely. The requirement that an invariant goes into an invariant may necessitate variants of Weyl' s transform. This is illustrated for the case of cubic invariants. Finally, the case of a specific value of energy is considered; in this case Weyl's transform does not yield an isomorphism even for the quadratic case. However, for this case a correspondence mapping a classical invariant to a quantum orie is explicitly found.
Chapters IV and V are concerned with the general group structure of evolution equations. In Chapter IV we establish a one to one correspondence between admissible Lie-Bäcklund operators of evolution equations (derivable from a variational principle) and conservation laws of these equations. This correspondence takes the form of a simple algorithm.
In Chapter V we first establish the group nature of all Bäcklund transformations (BT) by proving that any solution generated by a BT is invariant under the action of some conditionally admissible operator. We then use an algorithm based on invariance criteria to rederive many known BT and to derive some new ones. Finally, we propose a generalization of BT which, among other advantages, clarifies the connection between the wave-train solution and a BT in the sense that, a BT may be thought of as a variation of parameters of some. special case of the wave-train solution (usually the solitary wave one). Some open problems are indicated.
Most of the material of Chapters II and III is contained in [I], [II], [III] and [IV] and the first part of Chapter V in [V].
Resumo:
Data were taken in 1979-80 by the CCFRR high energy neutrino experiment at Fermilab. A total of 150,000 neutrino and 23,000 antineutrino charged current events in the approximate energy range 25 < E_v < 250GeV are measured and analyzed. The structure functions F2 and xF_3 are extracted for three assumptions about σ_L/σ_T:R=0., R=0.1 and R= a QCD based expression. Systematic errors are estimated and their significance is discussed. Comparisons or the X and Q^2 behaviour or the structure functions with results from other experiments are made.
We find that statistical errors currently dominate our knowledge of the valence quark distribution, which is studied in this thesis. xF_3 from different experiments has, within errors and apart from level differences, the same dependence on x and Q^2, except for the HPWF results. The CDHS F_2 shows a clear fall-off at low-x from the CCFRR and EMC results, again apart from level differences which are calculable from cross-sections.
The result for the the GLS rule is found to be 2.83±.15±.09±.10 where the first error is statistical, the second is an overall level error and the third covers the rest of the systematic errors. QCD studies of xF_3 to leading and second order have been done. The QCD evolution of xF_3, which is independent of R and the strange sea, does not depend on the gluon distribution and fits yield
ʌ_(LO) = 88^(+163)_(-78) ^(+113)_(-70) MeV
The systematic errors are smaller than the statistical errors. Second order fits give somewhat different values of ʌ, although α_s (at Q^2_0 = 12.6 GeV^2) is not so different.
A fit using the better determined F_2 in place of xF_3 for x > 0.4 i.e., assuming q = 0 in that region, gives
ʌ_(LO) = 266^(+114)_(-104) ^(+85)_(-79) MeV
Again, the statistical errors are larger than the systematic errors. An attempt to measure R was made and the measurements are described. Utilizing the inequality q(x)≥0 we find that in the region x > .4 R is less than 0.55 at the 90% confidence level.
Resumo:
This thesis presents a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intra-cortical connections so that information from a windowed region of primary visual cortex (Vl) is selectively routed to higher cortical areas. Local spatial relationships (i.e., topography) within the attentional window are preserved as information is routed through the cortex, thus enabling attended objects to be represented in higher cortical areas within an object-centered reference frame that is position and scale invariant. The representation in V1 is modeled as a multiscale stack of sample nodes with progressively lower resolution at higher eccentricities. Large changes in the size of the attentional window are accomplished by switching between different levels of the multiscale stack, while positional shifts and small changes in scale are accomplished by translating and rescaling the window within a single level of the stack. The control signals for setting the position and size of the attentional window are hypothesized to originate from neurons in the pulvinar and in the deep layers of visual cortex. The dynamics of these control neurons are governed by simple differential equations that can be realized by neurobiologically plausible circuits. In pre-attentive mode, the control neurons receive their input from a low-level "saliency map" representing potentially interesting regions of a scene. During the pattern recognition phase, control neurons are driven by the interaction between top-down (memory) and bottom-up (retinal input) sources. The model respects key neurophysiological, neuroanatomical, and psychophysical data relating to attention, and it makes a variety of experimentally testable predictions.
Resumo:
The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.
First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.
Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.
Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.
Resumo:
Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.
In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.
We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.
We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.
In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.
Finally, we discuss prospects for related future investigations.
Resumo:
The aim of this paper is to investigate to what extent the known theory of subdifferentiability and generic differentiability of convex functions defined on open sets can be carried out in the context of convex functions defined on not necessarily open sets. Among the main results obtained I would like to mention a Kenderov type theorem (the subdifferential at a generic point is contained in a sphere), a generic Gâteaux differentiability result in Banach spaces of class S and a generic Fréchet differentiability result in Asplund spaces. At least two methods can be used to prove these results: first, a direct one, and second, a more general one, based on the theory of monotone operators. Since this last theory was previously developed essentially for monotone operators defined on open sets, it was necessary to extend it to the context of monotone operators defined on a larger class of sets, our "quasi open" sets. This is done in Chapter III. As a matter of fact, most of these results have an even more general nature and have roots in the theory of minimal usco maps, as shown in Chapter II.
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.
Resumo:
We present a complete system for Spectral Cauchy characteristic extraction (Spectral CCE). Implemented in C++ within the Spectral Einstein Code (SpEC), the method employs numerous innovative algorithms to efficiently calculate the Bondi strain, news, and flux.
Spectral CCE was envisioned to ensure physically accurate gravitational wave-forms computed for the Laser Interferometer Gravitational wave Observatory (LIGO) and similar experiments, while working toward a template bank with more than a thousand waveforms to span the binary black hole (BBH) problem’s seven-dimensional parameter space.
The Bondi strain, news, and flux are physical quantities central to efforts to understand and detect astrophysical gravitational wave sources within the Simulations of eXtreme Spacetime (SXS) collaboration, with the ultimate aim of providing the first strong field probe of the Einstein field equation.
In a series of included papers, we demonstrate stability, convergence, and gauge invariance. We also demonstrate agreement between Spectral CCE and the legacy Pitt null code, while achieving a factor of 200 improvement in computational efficiency.
Spectral CCE represents a significant computational advance. It is the foundation upon which further capability will be built, specifically enabling the complete calculation of junk-free, gauge-free, and physically valid waveform data on the fly within SpEC.
Resumo:
Several patients of P. J. Vogel who had undergone cerebral commissurotomy for the control of intractable epilepsy were tested on a variety of tasks to measure aspects of cerebral organization concerned with lateralization in hemispheric function. From tests involving identification of shapes it was inferred that in the absence of the neocortical commissures, the left hemisphere still has access to certain types of information from the ipsilateral field. The major hemisphere can still make crude differentiations between various left-field stimuli, but is unable to specify exact stimulus properties. Most of the time the major hemisphere, having access to some ipsilateral stimuli, dominated the minor hemisphere in control of the body.
Competition for control of the body between the hemispheres is seen most clearly in tests of minor hemisphere language competency, in which it was determined that though the minor hemisphere does possess some minimal ability to express language, the major hemisphere prevented its expression much of the time. The right hemisphere was superior to the left in tests of perceptual visualization, and the two hemispheres appeared to use different strategies in attempting to solve the problems, namely, analysis for the left hemisphere and synthesis for the right hemisphere.
Analysis of the patients' verbal and performance I.Q.'s, as well as observations made throughout testing, suggest that the corpus callosum plays a critical role in activities that involve functions in which the minor hemisphere normally excels, that the motor expression of these functions may normally come through the major hemisphere by way of the corpus callosum.
Lateral specialization is thought to be an evolutionary adaptation which overcame problems of a functional antagonism between the abilities normally associated with the two hemispheres. The tests of perception suggested that this function lateralized into the mute hemisphere because of an active counteraction by language. This latter idea was confirmed by the finding that left-handers, in whom there is likely to be bilateral language centers, are greatly deficient on tests of perception.
Resumo:
A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.
We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.
We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.
Resumo:
Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number
dC(E) = sup(β:Hβ, C(E) > 0),
where Hβ, C is the outer measure
inf(Ʃm(Ci)β:UCi Ↄ E, Ci ϵ C) .
Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:
Inf(Ʃ(diam. (Ci))β: UCi Ↄ E, Ci ϵ C),
for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).
If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),
dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)
where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that
dC(E) = sup (dC(μ):μ ϵ M(E)).
This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,
(*) {dB(F), dC(f)): f ϵ Ӻ}
is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.
In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula
dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C
where
∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).
A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).
Resumo:
This investigation is concerned with the notion of concentrated loads in classical elastostatics and related issues. Following a limit treatment of problems involving concentrated internal and surface loads, the orders of the ensuing displacements and stress singularities, as well as the stress resultants of the latter, are determined. These conclusions are taken as a basis for an alternative direct formulation of concentrated-load problems, the completeness of which is established through an appropriate uniqueness theorem. In addition, the present work supplies a reciprocal theorem and an integral representation-theorem applicable to singular problems of the type under consideration. Finally, in the course of the analysis presented here, the theory of Green's functions in elastostatics is extended.