10 resultados para gas source molecular beam epitaxy
em CaltechTHESIS
Resumo:
The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an "earth-abundant" solar absorber, we find zinc phosphide (α-Zn3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>104 cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found.
The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are fabricated, including substrate and superstrate architectures, and evaluated based on their solar conversion efficiency.
Resumo:
Spectroscopic investigations of hydrogen-bonding and van der Waals' interactions m molecular clusters were studied by the techniques of infrared predissociation and resonance-enhanced multiphoton ionization spectroscopies (REMPI). Ab initio calculations were applied in conjunction for data interpretation.
The infrared predissociation spectroscopy of CN^-•(H_2O)_n (n = 2 - 6) clusters was reported in the region of 2950 - 3850 cm^(-1). The hydrogen bondings for the C-site and N-site binding, and among the water molecules were identified for n = 2 to 4. A spectral transition was observed for n = 5 and 6, implying that the anion was surface-bound onto the water aggregates in larger clusters.
The infrared predissociation spectroscopy of Br^-•(NH_3) and I^-•(NH_3)_n (n =1-3) clusters was reported in the region of 3050-3450 cm^(-1). For the Br^-•(NH_3) complex, a dominating ionic NH stretch appeared at 3175 cm^(-1), and the weaker free NH stretch appeared at 3348 cm^(-1). The observed spectrum was consistent to the structure in which there was one nearly linear hydrogen bond between Br^- and the NH_3 moiety. For the I^- •(NH_3) complex, five distinct IR absorption bands were observed in the spectrum. The spectrum was not consistent with basic frequency patterns of three geometries considered in the ab initio calculations - complex with one, two and three hydrogen bondings between I^- and the NH_3 moiety. Substantial inhomogenous broadening were displayed in the spectra for I^-•(NH_3)_n (n =2-3), suggesting the presence of multiple isomers.
The REMPI spectroscopy of the bound 4p ^2П 1/2 and ^2П 3/2 states, and the dissociative 3d ^2Σ^+ 1/2 state in the Al•Ar complex was reported. The dissociative spectrum at Al^+ channel suggested the coupling of the 4p ^2П 1/2,3/2 states to the repulsive 3d ^2Σ^+ 1/2 state. The spin-electronic coupling was further manifested in the dissociative Al^+ spectrum of the 3d ^2Σ^+ 1/2 state. Using the potential energy curves obtained from ab initio calculations, a bound → continuum Franck-Condon-intensity simulation was performed and compared with the one-photon 3d ^2Σ^+ 1/2 profile. The agreement provided evidence for the petturbation above the Al(3d)Ar dissociation limit, and the repulsive character of the 3d ^2Σ^+ 1/2 state.
Resumo:
In this thesis we investigate atomic scale imperfections and fluctuations in the quantum transport properties of novel semiconductor nanostructures. For this purpose, we have developed a numerically efficient supercell model of quantum transport capable of representing potential variations in three dimensions. This flexibility allows us to examine new quantum device structures made possible through state-of-the-art semiconductor fabrication techniques such as molecular beam epitaxy and nanolithography. These structures, with characteristic dimensions on the order of a few nanometers, hold promise for much smaller, faster and more efficient devices than those in present operation, yet they are highly sensitive to structural and compositional variations such as defect impurities, interface roughness and alloy disorder. If these quantum structures are to serve as components of reliable, mass-produced devices, these issues must be addressed.
In Chapter 1 we discuss some of the important issues in resonant tunneling devices and mention some of thier applications. In Chapters 2 and 3, we describe our supercell model of quantum transport and an efficient numerical implementation. In the remaining chapters, we present applications.
In Chapter 4, we examine transport in single and double barrier tunneling structures with neutral impurities. We find that an isolated attractive impurity in a single barrier can produce a transmission resonance whose position and strength are sensitive to the location of the impurity within the barrier. Multiple impurities can lead to a complex resonance structure that fluctuates widely with impurity configuration. In addition, impurity resonances can give rise to negative differential resistance. In Chapter 5, we study interface roughness and alloy disorder in double barrier structures. We find that interface roughness and alloy disorder can shift and broaden the n = 1 transmission resonance and give rise to new resonance peaks, especially in the presence of clusters comparable in size to the electron deBroglie wavelength. In Chapter 6 we examine the effects of interface roughness and impurities on transmission in a quantum dot electron waveguide. We find that variation in the configuration and stoichiometry of the interface roughness leads to substantial fluctuations in the transmission properties. These fluctuations are reduced by an attractive impurity placed near the center of the dot.
Resumo:
Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.
Resumo:
Chlorine oxide species have received considerable attention in recent years due to their central role in the balance of stratospheric ozone. Many questions pertaining to the behavior of such species still remain unanswered and plague the ability of researchers to develop accurate chemical models of the stratosphere. Presented in this thesis are three experiments that study various properties of some specific chlorine oxide species.
In the first chapter, the reaction between ClONO_2 and protonated water clusters is investigated to elucidate a possible reaction mechanism for the heterogeneous reaction of chlorine nitrate on ice. The ionic products were various forms of protonated nitric acid, NO_2 +(H_20)_m, m = 0, 1, 2. These products are analogous to products previously reported in the literature for the neutral reaction occurring on ice surfaces. Our results support the hypothesis that the heterogeneous reaction is acid-catalyzed.
In the second chapter, the photochemistry of ClONO_2 was investigated at two wavelengths, 193 and 248 nm, using the technique of photofragmentation translational spectroscopy. At both wavelengths, the predominant dissociation pathways were Cl + NO_3 and ClO + NO_2. Channel assignments were confirmed by momentum matching the counterfragments from each channel. A one-dimensional stratospheric model using the new 248 nm branching ratio determined how our results would affect the predicted Cl_x and NO_x partitioning in the stratosphere.
Chapter three explores the photodissociation dynamics of Cl_2O at 193, 248 and 308 nm. At 193 nm, we found evidence for the concerted reaction channel, Cl_2 + O. The ClO + Cl channel was also accessed, however, the majority of the ClO fragments were formed with sufficient internal energies for spontaneous secondary dissociation to occur. At 248 and 308 nm, we only observed only the ClO + Cl channel. . Some of the ClO formed at 248 nm was formed internally hot and spontaneously dissociated. Bimodal translational energy distributions of the ClO and Cl products indicate two pathways leading to the same product exist.
Appendix A, B and C discuss the details of data analysis techniques used in Chapters 1 and 2. The development of a molecular beam source of ClO dimer is presented in Appendix D.
Resumo:
Stable isotope geochemistry is a valuable toolkit for addressing a broad range of problems in the geosciences. Recent technical advances provide information that was previously unattainable or provide unprecedented precision and accuracy. Two such techniques are site-specific stable isotope mass spectrometry and clumped isotope thermometry. In this thesis, I use site-specific isotope and clumped isotope data to explore natural gas development and carbonate reaction kinetics. In the first chapter, I develop an equilibrium thermodynamics model to calculate equilibrium constants for isotope exchange reactions in small organic molecules. This equilibrium data provides a framework for interpreting the more complex data in the later chapters. In the second chapter, I demonstrate a method for measuring site-specific carbon isotopes in propane using high-resolution gas source mass spectrometry. This method relies on the characteristic fragments created during electron ionization, in which I measure the relative isotopic enrichment of separate parts of the molecule. My technique will be applied to a range of organic compounds in the future. For the third chapter, I use this technique to explore diffusion, mixing, and other natural processes in natural gas basins. As time progresses and the mixture matures, different components like kerogen and oil contribute to the propane in a natural gas sample. Each component imparts a distinct fingerprint on the site-specific isotope distribution within propane that I can observe to understand the source composition and maturation of the basin. Finally, in Chapter Four, I study the reaction kinetics of clumped isotopes in aragonite. Despite its frequent use as a clumped isotope thermometer, the aragonite blocking temperature is not known. Using laboratory heating experiments, I determine that the aragonite clumped isotope thermometer has a blocking temperature of 50-100°C. I compare this result to natural samples from the San Juan Islands that exhibit a maximum clumped isotope temperature that matches this blocking temperature. This thesis presents a framework for measuring site-specific carbon isotopes in organic molecules and new constraints on aragonite reaction kinetics. This study represents the foundation of a future generation of geochemical tools for the study of complex geologic systems.
Resumo:
Part I.
The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written
HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”
Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.
The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.
Part II.
The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:
F/Caa = -1.0 ± 0.5 kHz
F/Cbb = -2.7 ± 0.2 kHz
F/Ccc = -1.9 ± 0.1 kHz
From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ” - σ⊥, is +160 ± 30 ppm.
Resumo:
The complementary techniques of low-energy, variable-angle electron-impact spectroscopy and ultraviolet variable-angle photoelectron spectroscopy have been used to study the electronic spectroscopy and structure of several series of molecules. Electron-impact studies were performed at incident beam energies between 25 eV and 100 eV and at scattering angles ranging from 0° to 90°. The energy-loss regions from 0 eV to greater than 15 eV were studied. Photoelectron spectroscopic studies were conducted using a HeI radiation source and spectra were measured at scattering angles from 45° to 90°. The molecules studied were chosen because of their spectroscopic, chemical, and structural interest. The operation of a new electron-impact spectrometer with multiple-mode target source capability is described. This spectrometer has been used to investigate the spin-forbidden transitions in a number of molecular systems.
The electron-impact spectroscopy of the six chloro-substituted ethylenes has been studied over the energy-loss region from 0-15 eV. Spin-forbidden excitations corresponding to the π → π*, N → T transition have been observed at excitation energies ranging from 4.13 eV in vinyl chloride to 3.54 eV in tetrachloroethylene. Symmetry-forbidden transitions of the type π → np have been oberved in trans-dichloroethyene and tetrachlor oethylene. In addition, transitions to many states lying above the first ionization potential were observed for the first time. Many of these bands have been assigned to Rydberg series converging to higher ionization potentials. The trends observed in the measured transition energies for the π → π*, N → T, and N → V as well as the π → 3s excitation are discussed and compared to those observed in the methyl- and fluoro- substituted ethylenes.
The electron energy-loss spectra of the group VIb transition metal hexacarbonyls have been studied in the 0 eV to 15 eV region. The differential cross sections were obtained for several features in the 3-7 eV energy-loss region. The symmetry-forbidden nature of the 1A1g → 1A1g, 2t2g(π) → 3t2g(π*) transition in these compounds was confirmed by the high-energy, low-angle behavior of their relative intensities. Several low lying transitions have been assigned to ligand field transitions on the basis of the energy and angular behavior of the differential cross sections for these transitions. No transitions which could clearly be assigned to singlet → triplet excitations involving metal orbitals were located. A number of states lying above the first ionization potential have been observed for the first time. A number of features in the 6-14 eV energy-loss region of the spectra of these compounds correspond quite well to those observed in free CO.
A number of exploratory studies have been performed. The π → π*, N → T, singlet → triplet excitation has been located in vinyl bromide at 4.05 eV. We have also observed this transition at approximately 3.8 eV in a cis-/trans- mixture of the 1,2-dibromoethylenes. The low-angle spectrum of iron pentacarbonyl was measured over the energy-loss region extending from 2-12 eV. A number of transitions of 8 eV or greater excitation energy were observed for the first time. Cyclopropane was also studied at both high and low angles but no clear evidence for any spin- forbidden transitions was found. The electron-impact spectrum of the methyl radical resulting from the pyrolysis of tetramethyl tin was obtained at 100 eV incident energy and at 0° scattering angle. Transitions observed at 5.70 eV and 8.30 eV agree well with the previous optical results. In addition, a number of bands were observed in the 8-14 eV region which are most likely due to Rydberg transitions converging to the higher ionization potentials of this molecule. This is the first reported electron-impact spectrum of a polyatomic free radical.
Variable-angle photoelectron spectroscopic studies were performed on a series of three-membered-ring heterocyclic compounds. These compounds are of great interest due to their highly unusual structure. Photoelectron angular distributions using HeI radiation have been measured for the first time for ethylene oxide and ethyleneimine. The measured anisotropy parameters, β, along with those measured for cyclopropane were used to confirm the orbital correlations and photoelectron band assignments. No high values of β similar to those expected for alkene π orbitals were observed for the Walsh or Forster-Coulson-Moffit type orbitals.
Resumo:
I. PREAMBLE AND SCOPE
Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.
II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS
Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.
Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.
A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.
III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa
An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.
The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.
Resumo:
Mergers and interacting galaxies are pivotal to the evolution of galaxies in the universe. They are the sites of prodigious star formation and key to understanding the starburst processes: the physical and chemical properties and the dynamics of the molecular gas. ULIRGs or Ultraluminous Infrared Galaxies are a result of many of these mergers. They host extreme starbursts, AGNs, and mergers. They are the perfect laboratory to probe the connection between starbursts, black hole accretion and mergers and to further our understanding of star formation and merging.
NGC 6240 and Arp 220 can be considered the founding members of this very active class of objects. They are in different stages of merging and hence are excellent case studies to further our understanding about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with CARMA C and B Configurations (2" and 0.5 - 0.8"). Multi-band imaging allows excitation analysis of HCN, HCO+, HNC, and CS along with CO transitions to constrain the properties of the gas. Our dataset is unique in that we have observed these lines at similar resolutions and high sensitivity which can be used to derive line ratios of faint high excitation lines.
Arp 220 has not had confirmed X-ray AGN detections for either nuclei. However, our observations indicate HCN/HNC ratios consistent with the chemistry of X-ray Dominated Regions (XDRs) -- a likely symptom of AGN. We calculated the molecular Hydrogen densities using each of the molecular species and conclude that assuming abundances of HNC and HCO+ similar to those in galactic sources are incorrect in the case of ULIRGs. The physical conditions in the dense molecular gas in ULIRGs alter these abundances. The derived H2 volume densities are ~ 5 x 104 cm-3 in both Arp 220 nuclei and ~ 104 cm-3 in NGC 6240.