2 resultados para endoglucanase

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creation of thermostable enzymes has wide-ranging applications in industrial, scientific, and pharmaceutical settings. As various stabilization techniques exist, it is often unclear how to best proceed. To this end, we have redesigned Cel5A (HjCel5A) from Hypocrea jecorina (anamorph Trichoderma reesei) to comparatively evaluate several significantly divergent stabilization methods: 1) consensus design, 2) core repacking, 3) helix dipole stabilization, 4) FoldX ΔΔG approximations, 5) Triad ΔΔG approximations, and 6) entropy reduction through backbone stabilization. As several of these techniques require structural data, we initially solved the first crystal structure of HjCel5A to 2.05 Å. Results from the stabilization experiments demonstrate that consensus design works best at accurately predicting highly stabilizing and active mutations. FoldX and helix dipole stabilization, however, also performed well. Both methods rely on structural data and can reveal non-conserved, structure-dependent mutations with high fidelity. HjCel5A is a prime target for stabilization. Capable of cleaving cellulose strands from agricultural waste into fermentable sugars, this protein functions as the primary endoglucanase in an organism commonly used in the sustainable biofuels industry. Creating a long-lived, highly active thermostable HjCel5A would allow cellulose hydrolysis to proceed more efficiently, lowering production expenses. We employed information gleaned during the survey of stabilization techniques to generate HjCel5A variants demonstrating a 12-15 °C increase in the temperature at which 50% of the total activity persists, an 11-14 °C increase in optimal operating temperature, and a 60% increase over the maximal amount of hydrolysis achievable using the wild type enzyme. We anticipate that our comparative analysis of stabilization methods will prove useful in future thermostabilization experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homologous recombination is a source of diversity in both natural and directed evolution. Standing genetic variation that has passed the test of natural selection is combined in new ways, generating functional and sometimes unexpected changes. In this work we evaluate the utility of homologous recombination as a protein engineering tool, both in comparison with and combined with other protein engineering techniques, and apply it to an industrially important enzyme: Hypocrea jecorina Cel5a.

Chapter 1 reviews work over the last five years on protein engineering by recombination. Chapter 2 describes the recombination of Hypocrea jecorina Cel5a endoglucanase with homologous enzymes in order to improve its activity at high temperatures. A chimeric Cel5a that is 10.1 °C more stable than wild-type and hydrolyzes 25% more cellulose at elevated temperatures is reported. Chapter 3 describes an investigation into the synergy of thermostable cellulases that have been engineered by recombination and other methods. An engineered endoglucanase and two engineered cellobiohydrolases synergistically hydrolyzed cellulose at high temperatures, releasing over 200% more reducing sugars over 60 h at their optimal mixture relative to the best mixture of wild-type enzymes. These results provide a framework for engineering cellulolytic enzyme mixtures for the industrial conditions of high temperatures and long incubation times.

In addition to this work on recombination, we explored three other problems in protein engineering. Chapter 4 describes an investigation into replacing enzymes with complex cofactors with simple cofactors, using an E. coli enolase as a model system. Chapter 5 describes engineering broad-spectrum aldehyde resistance in Saccharomyces cerevisiae by evolving an alcohol dehydrogenase simultaneously for activity and promiscuity. Chapter 6 describes an attempt to engineer gene-targeted hypermutagenesis into E. coli to facilitate continuous in vivo selection systems.