37 resultados para approximate

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.

The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.

When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.

For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate theory for steady irrotational flow through a cascade of thin cambered airfoils is developed. Isolated thin airfoils have only slight camber is most applications, and the well known methods that replace the source and vorticity distributions of the curved camber line by similar distributions on the straight chord line are adequate. In cascades, however, the camber is usually appreciable, and significant errors are introduced if the vorticity and source distributions on the camber line are approximated by the same distribution on the chord line.

The calculation of the flow field becomes very clumsy in practice if the vorticity and source distributions are not confined to a straight line. A new method is proposed and investigated; in this method, at each point on the camber line, the vorticity and sources are assumed to be distributed along a straight line tangent to the camber line at that point, and corrections are determined to account for the deviation of the actual camber line from the tangent line. Hence, the basic calculation for the cambered airfoils is reduced to the simpler calculation of the straight line airfoils, with the equivalent straight line airfoils changing from point to point.

The results of the approximate method are compared with numerical solutions for cambers as high as 25 per cent of the chord. The leaving angles of flow are predicted quite well, even at this high value of the camber. The present method also gives the functional relationship between the exit angle and the other parameters such as airfoil shape and cascade geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.

Part II

The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.

Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory of bifurcation of solutions to two-point boundary value problems is developed for a system of nonlinear first order ordinary differential equations in which the bifurcation parameter is allowed to appear nonlinearly. An iteration method is used to establish necessary and sufficient conditions for bifurcation and to construct a unique bifurcated branch in a neighborhood of a bifurcation point which is a simple eigenvalue of the linearized problem. The problem of bifurcation at a degenerate eigenvalue of the linearized problem is reduced to that of solving a system of algebraic equations. Cases with no bifurcation and with multiple bifurcation at a degenerate eigenvalue are considered.

The iteration method employed is shown to generate approximate solutions which contain those obtained by formal perturbation theory. Thus the formal perturbation solutions are rigorously justified. A theory of continuation of a solution branch out of the neighborhood of its bifurcation point is presented. Several generalizations and extensions of the theory to other types of problems, such as systems of partial differential equations, are described.

The theory is applied to the problem of the axisymmetric buckling of thin spherical shells. Results are obtained which confirm recent numerical computations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data were taken in 1979-80 by the CCFRR high energy neutrino experiment at Fermilab. A total of 150,000 neutrino and 23,000 antineutrino charged current events in the approximate energy range 25 < E_v < 250GeV are measured and analyzed. The structure functions F2 and xF_3 are extracted for three assumptions about σ_L/σ_T:R=0., R=0.1 and R= a QCD based expression. Systematic errors are estimated and their significance is discussed. Comparisons or the X and Q^2 behaviour or the structure functions with results from other experiments are made.

We find that statistical errors currently dominate our knowledge of the valence quark distribution, which is studied in this thesis. xF_3 from different experiments has, within errors and apart from level differences, the same dependence on x and Q^2, except for the HPWF results. The CDHS F_2 shows a clear fall-off at low-x from the CCFRR and EMC results, again apart from level differences which are calculable from cross-sections.

The result for the the GLS rule is found to be 2.83±.15±.09±.10 where the first error is statistical, the second is an overall level error and the third covers the rest of the systematic errors. QCD studies of xF_3 to leading and second order have been done. The QCD evolution of xF_3, which is independent of R and the strange sea, does not depend on the gluon distribution and fits yield

ʌ_(LO) = 88^(+163)_(-78) ^(+113)_(-70) MeV

The systematic errors are smaller than the statistical errors. Second order fits give somewhat different values of ʌ, although α_s (at Q^2_0 = 12.6 GeV^2) is not so different.

A fit using the better determined F_2 in place of xF_3 for x > 0.4 i.e., assuming q = 0 in that region, gives

ʌ_(LO) = 266^(+114)_(-104) ^(+85)_(-79) MeV

Again, the statistical errors are larger than the systematic errors. An attempt to measure R was made and the measurements are described. Utilizing the inequality q(x)≥0 we find that in the region x > .4 R is less than 0.55 at the 90% confidence level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brain is perhaps the most complex system to have ever been subjected to rigorous scientific investigation. The scale is staggering: over 10^11 neurons, each making an average of 10^3 synapses, with computation occurring on scales ranging from a single dendritic spine, to an entire cortical area. Slowly, we are beginning to acquire experimental tools that can gather the massive amounts of data needed to characterize this system. However, to understand and interpret these data will also require substantial strides in inferential and statistical techniques. This dissertation attempts to meet this need, extending and applying the modern tools of latent variable modeling to problems in neural data analysis.

It is divided into two parts. The first begins with an exposition of the general techniques of latent variable modeling. A new, extremely general, optimization algorithm is proposed - called Relaxation Expectation Maximization (REM) - that may be used to learn the optimal parameter values of arbitrary latent variable models. This algorithm appears to alleviate the common problem of convergence to local, sub-optimal, likelihood maxima. REM leads to a natural framework for model size selection; in combination with standard model selection techniques the quality of fits may be further improved, while the appropriate model size is automatically and efficiently determined. Next, a new latent variable model, the mixture of sparse hidden Markov models, is introduced, and approximate inference and learning algorithms are derived for it. This model is applied in the second part of the thesis.

The second part brings the technology of part I to bear on two important problems in experimental neuroscience. The first is known as spike sorting; this is the problem of separating the spikes from different neurons embedded within an extracellular recording. The dissertation offers the first thorough statistical analysis of this problem, which then yields the first powerful probabilistic solution. The second problem addressed is that of characterizing the distribution of spike trains recorded from the same neuron under identical experimental conditions. A latent variable model is proposed. Inference and learning in this model leads to new principled algorithms for smoothing and clustering of spike data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the following singularly perturbed linear two-point boundary-value problem:

Ly(x) ≡ Ω(ε)D_xy(x) - A(x,ε)y(x) = f(x,ε) 0≤x≤1 (1a)

By ≡ L(ε)y(0) + R(ε)y(1) = g(ε) ε → 0^+ (1b)

Here Ω(ε) is a diagonal matrix whose first m diagonal elements are 1 and last m elements are ε. Aside from reasonable continuity conditions placed on A, L, R, f, g, we assume the lower right mxm principle submatrix of A has no eigenvalues whose real part is zero. Under these assumptions a constructive technique is used to derive sufficient conditions for the existence of a unique solution of (1). These sufficient conditions are used to define when (1) is a regular problem. It is then shown that as ε → 0^+ the solution of a regular problem exists and converges on every closed subinterval of (0,1) to a solution of the reduced problem. The reduced problem consists of the differential equation obtained by formally setting ε equal to zero in (1a) and initial conditions obtained from the boundary conditions (1b). Several examples of regular problems are also considered.

A similar technique is used to derive the properties of the solution of a particular difference scheme used to approximate (1). Under restrictions on the boundary conditions (1b) it is shown that for the stepsize much larger than ε the solution of the difference scheme, when applied to a regular problem, accurately represents the solution of the reduced problem.

Furthermore, the existence of a similarity transformation which block diagonalizes a matrix is presented as well as exponential bounds on certain fundamental solution matrices associated with the problem (1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of cell-cell interactions in the nervous system are mediated by immunoglobulin gene superfamily members. For example, neuroglian, a homophilic neural cell adhesion molecule in Drosophila, has an extracellular portion comprising six C- 2 type immunoglobulin-like domains followed by five fibronectin type III (FnIII) repeats. Neuroglian shares this domain organization and significant sequence identity with Ll, a murine neural adhesion molecule that could be a functional homologue. Here I report the crystal structure of a proteolytic fragment containing the first two FnIII repeats of neuroglian (NgFn 1,2) at 2.0Å. The interpretation of photomicrographs of rotary shadowed Ng, the entire extracellular portion of neuroglian, and NgFnl-5, the five neuroglian Fn III domains, is also discussed.

The structure of NgFn 1,2 consists of two roughly cylindrical β-barrel structural motifs arranged in a head-to-tail fashion with the domains meeting at an angle of ~120, as defined by the cylinder axes. The folding topology of each domain is identical to that previously observed for single FnIII domains from tenascin and fibronectin. The domains of NgFn1,2 are related by an approximate two fold screw axis that is nearly parallel to the longest dimension of the fragment. Assuming this relative orientation is a general property of tandem FnIII repeats, the multiple tandem FnIII domains in neuroglian and other proteins are modeled as thin straight rods with two domain zig-zag repeats. When combined with the dimensions of pairs of tandem immunoglobulin-like domains from CD4 and CD2, this model suggests that neuroglian is a long narrow molecule (20 - 30 Å in diameter) that extends up to 370Å from the cell surface.

In photomicrographs, rotary shadowed Ng and NgFn1-5 appear to be highly flexible rod-like molecules. NgFn 1-5 is observed to bend in at least two positions and has a mean total length consistent with models generated from the NgFn1,2 structure. Ng molecules have up to four bends and a mean total length of 392 Å, consistent with a head-to-tail packing of neuroglian's C2-type domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.

Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.

In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.

The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

What kinds of motion can occur in classical mechanics? We address this question by looking at the structures traced out by trajectories in phase space; the most orderly, completely integrable systems are characterized by phase trajectories confined to low-dimensional, invariant tori. The KAM theory examines what happens to the tori when an integrable system is subjected to a small perturbation and finds that, for small enough perturbations, most of them survive.

The KAM theory is mute about the disrupted tori, but, for two-dimensional systems, Aubry and Mather discovered an astonishing picture: the broken tori are replaced by "cantori," tattered, Cantor-set remnants of the original invariant curves. We seek to extend Aubry and Mather's picture to higher dimensional systems and report two kinds of studies; both concern perturbations of a completely integrable, four-dimensional symplectic map. In the first study we compute some numerical approximations to Birkhoff periodic orbits; sequences of such orbits should approximate any higher dimensional analogs of the cantori. In the second study we prove converse KAM theorems; that is, we use a combination of analytic arguments and rigorous, machine-assisted computations to find perturbations so large that no KAM tori survive. We are able to show that the last few of our Birkhoff orbits exist in a regime where there are no tori.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A research program was designed (1) to map regional lithological units of the lunar surface based on measurements of spatial variations in spectral reflectance, and, (2) to establish the sequence of the formation of such lithological units from measurements of the accumulated affects of impacting bodies.

Spectral reflectance data were obtained by scanning luminance variations over the lunar surface at three wavelengths (0.4µ, 0.52µ, and 0.7µ). These luminance measurements were reduced to normalized spectral reflectance values relative to a standard area in More Serenitotis. The spectral type of each lunar area was identified from the shape of its reflectance spectrum. From these data lithological units or regions of constant color were identified. The maria fall into two major spectral classes: circular moria like More Serenitotis contain S-type or red material and thin, irregular, expansive maria like Mare Tranquillitatis contain T-type or blue material. Four distinct subtypes of S-type reflectances and two of T-type reflectances exist. As these six subtypes occur in a number of lunar regions, it is concluded that they represent specific types of material rather than some homologous set of a few end members.

The relative ages or sequence of formation of these more units were established from measurements of the accumulated impacts which have occurred since more formation. A model was developed which relates the integrated flux of particles which hove impacted a surface to the distribution of craters as functions of size and shape. Erosion of craters is caused chiefly by small bodies which produce negligible individual changes in crater shape. Hence the shape of a crater can be used to estimate the total number of small impacts that have occurred since the crater was formed. Relative ages of a surface can then be obtained from measurements of the slopes of the walls of the oldest craters formed on the surface. The results show that different maria and regions within them were emplaced at different times. An approximate absolute time scale was derived from Apollo 11 crystallization ages under an assumption of a constant rote of impacting for the last 4 x 10^9 yrs. Assuming, constant flux, the period of mare formation lasted from over 4 x 10^9 yrs to about 1.5 x 10^9 yrs ago.

A synthesis of the results of relative age measurements and of spectral reflectance mapping shows that (1) the formation of the lunar maria occurred in three stages; material of only one spectral type was deposited in each stage, (2) two distinct kinds of maria exist, each type distinguished by morphology, structure, gravity anomalies, time of formation, and spectral reflectance type, and (3) individual maria have complicated histories; they contain a variety of lithic units emplaced at different times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical and chemical properties of low-valent platinum dimers, namely [Pt_2(P_2O_5H_2)4]^(4-) and Pt_2(µ-dppm)_2Cl_2, have been investigated using a variety of structural and spectroscopic techniques.

Platinum(II) d^8-d^8 dimers have been shown to exhibit much thermal and photochemical reactivity. Chapter 2 describes studies aimed at elucidating the excited state reduction potenetial of [Pt_2(P_2O_5H_2)4]^(4-), Pt_2, in organic media. By conducting excited state electron transfer studies using derivatized pyridiniums and benzophenones, the excited state reduction potential has been estimated to be ~2 V. The Pt_2 complex undergoes partial oxidation to form Pt(II,III) linear chains. Chapter 3 describes the structural and spectroscopic techniques used to determine the translational symmetries of these [Pt_2(P_2O_5H_2)4]^(4-) (X = Cl, Br), Pt_2X, chains. Pt_2Br has been found to be intermediate between (AAB)_n and (AABCCB)_n, while, Pt_2Cl is of (AABCCB)_n translational symmetry. Investigations into the electronic transitions of Pt_2Cl and Pt_2Br were conducted using high pressure techniques and are presented in Chapter 4. The Pt_2X electronic spectrum exhibits bands attributable to the reduced Pt2 complex and the oxidized Pt_2X_2 complex [Pt_2(P_2O_5H_2)4]^(4-) along with an intervalence charge-tranfer band characteristic of a mixed-valence solid.

Photophysical investigations of a new luminescent chromophore, Pt_2(µ-dppm)_2Cl_2, a d^9-d^9 dimer, and its analogs are described in Chapter 5. The absorption band directly responsible for the observed emission is believed to be very weak and, as of yet, unobserved. Attempts to determine the spin multiplicty and approximate energy of this unobserved transition are described in Chapter 6. Excited-state energy transfer studies indicate that this absorption band is a triplet transition at -13,000 cm^(-1). Although, the Pt_2(µ-dppm)_2Cl_2 excited state is non-luminescent in fluid solution, it has been shown to undergo thermal electron transfer to tetracyanoethylene and photoinduced electron transfer to methylviologen. These experiments are presented in Chapter 7. Preliminary studies, described in Chapter 8, of non-bridged d^9-d^9 platinum(I) dimers have shown that [Pt_2(CNCH_3)_6]^(2+) serves as a versatile precursor in the synthesis of new d^8-d^8 A-frame complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic properties of a structure are a function of its physical properties, and changes in the physical properties of the structure, including the introduction of structural damage, can cause changes in its dynamic behavior. Structural health monitoring (SHM) and damage detection methods provide a means to assess the structural integrity and safety of a civil structure using measurements of its dynamic properties. In particular, these techniques enable a quick damage assessment following a seismic event. In this thesis, the application of high-frequency seismograms to damage detection in civil structures is investigated.

Two novel methods for SHM are developed and validated using small-scale experimental testing, existing structures in situ, and numerical testing. The first method is developed for pre-Northridge steel-moment-resisting frame buildings that are susceptible to weld fracture at beam-column connections. The method is based on using the response of a structure to a nondestructive force (i.e., a hammer blow) to approximate the response of the structure to a damage event (i.e., weld fracture). The method is applied to a small-scale experimental frame, where the impulse response functions of the frame are generated during an impact hammer test. The method is also applied to a numerical model of a steel frame, in which weld fracture is modeled as the tensile opening of a Mode I crack. Impulse response functions are experimentally obtained for a steel moment-resisting frame building in situ. Results indicate that while acceleration and velocity records generated by a damage event are best approximated by the acceleration and velocity records generated by a colocated hammer blow, the method may not be robust to noise. The method seems to be better suited for damage localization, where information such as arrival times and peak accelerations can also provide indication of the damage location. This is of significance for sparsely-instrumented civil structures.

The second SHM method is designed to extract features from high-frequency acceleration records that may indicate the presence of damage. As short-duration high-frequency signals (i.e., pulses) can be indicative of damage, this method relies on the identification and classification of pulses in the acceleration records. It is recommended that, in practice, the method be combined with a vibration-based method that can be used to estimate the loss of stiffness. Briefly, pulses observed in the acceleration time series when the structure is known to be in an undamaged state are compared with pulses observed when the structure is in a potentially damaged state. By comparing the pulse signatures from these two situations, changes in the high-frequency dynamic behavior of the structure can be identified, and damage signals can be extracted and subjected to further analysis. The method is successfully applied to a small-scale experimental shear beam that is dynamically excited at its base using a shake table and damaged by loosening a screw to create a moving part. Although the damage is aperiodic and nonlinear in nature, the damage signals are accurately identified, and the location of damage is determined using the amplitudes and arrival times of the damage signal. The method is also successfully applied to detect the occurrence of damage in a test bed data set provided by the Los Alamos National Laboratory, in which nonlinear damage is introduced into a small-scale steel frame by installing a bumper mechanism that inhibits the amount of motion between two floors. The method is successfully applied and is robust despite a low sampling rate, though false negatives (undetected damage signals) begin to occur at high levels of damage when the frequency of damage events increases. The method is also applied to acceleration data recorded on a damaged cable-stayed bridge in China, provided by the Center of Structural Monitoring and Control at the Harbin Institute of Technology. Acceleration records recorded after the date of damage show a clear increase in high-frequency short-duration pulses compared to those previously recorded. One undamage pulse and two damage pulses are identified from the data. The occurrence of the detected damage pulses is consistent with a progression of damage and matches the known chronology of damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low-thrust guidance problem is defined as the minimum terminal variance (MTV) control of a space vehicle subjected to random perturbations of its trajectory. To accomplish this control task, only bounded thrust level and thrust angle deviations are allowed, and these must be calculated based solely on the information gained from noisy, partial observations of the state. In order to establish the validity of various approximations, the problem is first investigated under the idealized conditions of perfect state information and negligible dynamic errors. To check each approximate model, an algorithm is developed to facilitate the computation of the open loop trajectories for the nonlinear bang-bang system. Using the results of this phase in conjunction with the Ornstein-Uhlenbeck process as a model for the random inputs to the system, the MTV guidance problem is reformulated as a stochastic, bang-bang, optimal control problem. Since a complete analytic solution seems to be unattainable, asymptotic solutions are developed by numerical methods. However, it is shown analytically that a Kalman filter in cascade with an appropriate nonlinear MTV controller is an optimal configuration. The resulting system is simulated using the Monte Carlo technique and is compared to other guidance schemes of current interest.