6 resultados para ageing in place
em CaltechTHESIS
Resumo:
This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by considering a fundamental impediment to classical motion planning algorithms called the freezing robot problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing predictive uncertainty by employing higher fidelity individual dynamics models or heuristically limiting the individual predictive covariance to prevent overcautious navigation. We demonstrate that both the individual prediction and the individual predictive uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision avoidance, cooperatively making room to create feasible trajectories. We accordingly develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a "multiple goal" extension that models the goal driven nature of human decision making. Navigation naturally emerges as a statistic of this distribution.
Most importantly, we empirically validate our models in the Chandler dining hall at Caltech during peak hours, and in the process, carry out the first extensive quantitative study of robot navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-interacting planner or our reactive planner captures the salient characteristics of nearly any existing dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.
Finally, we produce a large database of ground truth pedestrian crowd data. We make this ground truth database publicly available for further scientific study of crowd prediction models, learning from demonstration algorithms, and human robot interaction models in general.
Resumo:
Data were taken in 1979-80 by the CCFRR high energy neutrino experiment at Fermilab. A total of 150,000 neutrino and 23,000 antineutrino charged current events in the approximate energy range 25 < E_v < 250GeV are measured and analyzed. The structure functions F2 and xF_3 are extracted for three assumptions about σ_L/σ_T:R=0., R=0.1 and R= a QCD based expression. Systematic errors are estimated and their significance is discussed. Comparisons or the X and Q^2 behaviour or the structure functions with results from other experiments are made.
We find that statistical errors currently dominate our knowledge of the valence quark distribution, which is studied in this thesis. xF_3 from different experiments has, within errors and apart from level differences, the same dependence on x and Q^2, except for the HPWF results. The CDHS F_2 shows a clear fall-off at low-x from the CCFRR and EMC results, again apart from level differences which are calculable from cross-sections.
The result for the the GLS rule is found to be 2.83±.15±.09±.10 where the first error is statistical, the second is an overall level error and the third covers the rest of the systematic errors. QCD studies of xF_3 to leading and second order have been done. The QCD evolution of xF_3, which is independent of R and the strange sea, does not depend on the gluon distribution and fits yield
ʌ_(LO) = 88^(+163)_(-78) ^(+113)_(-70) MeV
The systematic errors are smaller than the statistical errors. Second order fits give somewhat different values of ʌ, although α_s (at Q^2_0 = 12.6 GeV^2) is not so different.
A fit using the better determined F_2 in place of xF_3 for x > 0.4 i.e., assuming q = 0 in that region, gives
ʌ_(LO) = 266^(+114)_(-104) ^(+85)_(-79) MeV
Again, the statistical errors are larger than the systematic errors. An attempt to measure R was made and the measurements are described. Utilizing the inequality q(x)≥0 we find that in the region x > .4 R is less than 0.55 at the 90% confidence level.
Resumo:
The E‒H bond activation chemistry of tris-phosophino-iron and -cobalt metallaboratranes is discussed. The ferraboratrane complex (TPB)Fe(N2) heterolytically activates H‒H and the C‒H bonds of formaldehyde and arylacetylenes across an Fe‒B bond. In particular, H‒H bond cleavage at (TPB)Fe(N2) is reversible and affords the iron-hydride-borohydride complex (TPB)(μ‒H)Fe(L)(H) (L = H2, N2). (TPB)(μ‒H)Fe(L)(H) and (TPB)Fe(N2) are competent olefin and arylacetylene hydrogenation catalysts. Stoichiometric studies indicate that the B‒H unit is capable of acting as a hydride shuttle in the hydrogenation of olefin and arylacetylene substrates. The heterolytic cleavage of H2 by the (TPB)Fe system is distinct from the previously reported (TPB)Co(H2) complex, where H2 coordinates as a non-classical H2 adduct based on X-ray, spectroscopic, and reactivity data. The non-classical H2 ligand in (TPB)Co(H2) is confirmed in this work by single crystal neutron diffraction, which unequivocally shows an intact H‒H bond of 0.83 Å in the solid state. The neutron structure also shows that the H2 ligand is localized at two orientations on cobalt trans to the boron. This localization in the solid state contrasts with the results from ENDOR spectroscopy that show that the H2 ligand freely rotates about the Co‒H2 axis in frozen solution. Finally, the (TPB)Fe system, as well as related tris-phosphino-iron complexes that contain a different apical ligand unit (Si, PhB, C, and N) in place of the boron in (TPB)Fe, were studied for CO2 hydrogenation chemistry. The (TPB)Fe system is not catalytically competent, while the silicon, borate, carbon variants, (SiPR3)Fe, (PhBPiPr3)Fe, and (CPiPr3)Fe, respectively, are catalysts for the hydrogenation of CO2 to formate and methylformate. The hydricity of the CO2 reactive species in the silatrane system (SiPiPr3)Fe(N2)(H) has been experimentally estimated.
Quantitative, Time-Resolved Proteomic Analysis Using Bio-Orthogonal Non-Canonical Amino Acid Tagging
Resumo:
Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.
Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.
Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.
In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.
In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.
Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.
Resumo:
Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.
In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.
Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.
We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.
Resumo:
Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number
dC(E) = sup(β:Hβ, C(E) > 0),
where Hβ, C is the outer measure
inf(Ʃm(Ci)β:UCi Ↄ E, Ci ϵ C) .
Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:
Inf(Ʃ(diam. (Ci))β: UCi Ↄ E, Ci ϵ C),
for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).
If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),
dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)
where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that
dC(E) = sup (dC(μ):μ ϵ M(E)).
This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,
(*) {dB(F), dC(f)): f ϵ Ӻ}
is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.
In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula
dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C
where
∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).
A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).