9 resultados para Internal feedback

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells exhibit a diverse repertoire of dynamic behaviors. These dynamic functions are implemented by circuits of interacting biomolecules. Although these regulatory networks function deterministically by executing specific programs in response to extracellular signals, molecular interactions are inherently governed by stochastic fluctuations. This molecular noise can manifest as cell-to-cell phenotypic heterogeneity in a well-mixed environment. Single-cell variability may seem like a design flaw but the coexistence of diverse phenotypes in an isogenic population of cells can also serve a biological function by increasing the probability of survival of individual cells upon an abrupt change in environmental conditions. Decades of extensive molecular and biochemical characterization have revealed the connectivity and mechanisms that constitute regulatory networks. We are now confronted with the challenge of integrating this information to link the structure of these circuits to systems-level properties such as cellular decision making. To investigate cellular decision-making, we used the well studied galactose gene-regulatory network in \textit{Saccharomyces cerevisiae}. We analyzed the mechanism and dynamics of the coexistence of two stable on and off states for pathway activity. We demonstrate that this bimodality in the pathway activity originates from two positive feedback loops that trigger bistability in the network. By measuring the dynamics of single-cells in a mixed sugar environment, we observe that the bimodality in gene expression is a transient phenomenon. Our experiments indicate that early pathway activation in a cohort of cells prior to galactose metabolism can accelerate galactose consumption and provide a transient increase in growth rate. Together these results provide important insights into strategies implemented by cells that may have been evolutionary advantageous in competitive environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a hungry fruit fly, locating and landing on a fermenting fruit where it can feed, find mates, and lay eggs, is an essential and difficult task requiring the integration of both olfactory and visual cues. Understanding how flies accomplish this will help provide a comprehensive ethological context for the expanding knowledge of their neural circuits involved in processing olfaction and vision, as well as inspire novel engineering solutions for control and estimation in computationally limited robotic applications. In this thesis, I use novel high throughput methods to develop a detailed overview of how flies track odor plumes, land, and regulate flight speed. Finally, I provide an example of how these insights can be applied to robotic applications to simplify complicated estimation problems. To localize an odor source, flies exhibit three iterative, reflex-driven behaviors. Upon encountering an attractive plume, flies increase their flight speed and turn upwind using visual cues. After losing the plume, flies begin zigzagging crosswind, again using visual cues to control their heading. After sensing an attractive odor, flies become more attracted to small visual features, which increases their chances of finding the plume source. Their changes in heading are largely controlled by open-loop maneuvers called saccades, which they direct towards and away from visual features. If a fly decides to land on an object, it begins to decelerate so as to maintain a stereotypical ratio of expansion to retinal size. Once they reach a stereotypical distance from the target, flies extend their legs in preparation for touchdown. Although it is unclear what cues they use to trigger this behavior, previous studies have indicated that it is likely under visual control. In Chapter 3, I use a nonlinear control theoretic analysis and robotic testbed to propose a novel and putative mechanism for how a fly might visually estimate distance by actively decelerating according to a visual control law. Throughout these behaviors, a common theme is the visual control of flight speed. Using genetic tools I show that the neuromodulator octopamine plays an important role in regulating flight speed, and propose a neural circuit for how this controller might be implemented in the flies brain. Two general biological and engineering principles are evident across my experiments: (1) complex behaviors, such as foraging, can emerge from the interactions of simple independent sensory-motor modules; (2) flies control their behavior in such a way that simplifies complex estimation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).

In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric dipole internal conversion has been experimentally studied for several nuclei in the rare earth region. Anomalies in the conversion process have been interpreted in terms of nuclear structure effects. It was found that all the experimental results could be interpreted in terms of the j ∙ r type of penetration matrix element; the j ∙ ∇ type of penetration matrix element was not important. The ratio λ of the El j ∙ r penetration matrix element to the El gamma-ray matrix element was determined from the experiments to be:

Lu175,396 keV, λ = - 1000 ± 100;

282 keV, λ = 500 ± 100;

144 keV, λ = 500 ± 250;

Hf177, 321 keV λ = - 1400 ± 200;

208 keV λ = - 90 ± 40;

72 keV |λ| ≤ 650;

Gd155, 86 keV λ = - 150 ± 100;

Tm169, 63 keV λ = - 100 ± 100;

W182, 152 keV, λ = - 160 ±80;

67 keV, λ = - 100 ± 100.

Predictions for λ are made using the unified nuclear model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies of nuclear effects in internal conversion in Ta181 and Lu175 have been performed. Nuclear structure effects (“penetration” effects), in internal conversion are described in general. Calculation of theoretical conversion coefficients are outlined. Comparisons with the theoretical conversion coefficient tables of Rose and Sliv and Band are made. Discrepancies between our results and those of Rose and Sliv are noted. The theoretical conversion coefficients of Sliv and Band are in substantially better agreement with our results than are those of Rose. The ratio of the M1 penetration matrix element to the M1 gamma-ray matrix element, called λ, is equal to + 175 ± 25 for the 482 keV transition in Ta181 . The results for the 343 keV transition in Lu175 indicate that λ may be as large as – 8 ± 5. These transitions are discussed in terms of the unified collective model. Precision L subshell measurements in Tm169 (130keV), W182 (100 keV), and Ta181 (133 keV) show definite systematic deviations from the theoretical conversion coefficients. The possibility of explaining these deviations by penetration effects is investigated and is shown to be excluded. Other explanations of these anomalies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I.

The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written

HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”

Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.

The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.

Part II.

The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:

F/Caa = -1.0 ± 0.5 kHz

F/Cbb = -2.7 ± 0.2 kHz

F/Ccc = -1.9 ± 0.1 kHz

From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ - σ, is +160 ± 30 ppm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is concerned with block coding for a feedback communication system in which the forward and feedback channels are independently disturbed by additive white Gaussian noise and average power constrained. Two coding schemes are proposed in which the messages to be coded for transmission over the forward channel are realized as a set of orthogonal waveforms. A finite number of forward and feedback transmissions (iterations) per message is made. Information received over the feedback channel is used to modify the waveform transmitted on successive forward iterations in such a way that the expected value of forward signal energy is zero on all iterations after the first. Similarly, information is sent over the feedback channel in such a way that the expected value of feedback signal energy is also zero on all iterations after the first. These schemes are shown to achieve a lower probability of error than the best one-way coding scheme at all rates up to the forward channel capacity, provided only that the feedback channel capacity be greater than the forward channel capacity. These schemes make more efficient use of the available feedback power than existing feedback coding schemes, and therefore require less feedback power to achieve a given error performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optomechanical interaction is an extremely powerful tool with which to measure mechanical motion. The displacement resolution of chip-scale optomechanical systems has been measured on the order of 1⁄10th of a proton radius. So strong is this optomechanical interaction that it has recently been used to remove almost all thermal noise from a mechanical resonator and observe its quantum ground-state of motion starting from cryogenic temperatures.

In this work, chapter 1 describes the basic physics of the canonical optomechanical system, optical measurement techniques, and how the optomechanical interaction affects the coupled mechanical resonator. In chapter 2, we describe our techniques for realizing this canonical optomechanical system in a chip-scale form factor.

In chapter 3, we describe an experiment where we used radiation pressure feedback to cool a mesoscopic mechanical resonator near its quantum ground-state from room-temperature. We cooled the resonator from a room temperature phonon occupation of <n> = 6.5 million to an occupation of <n> = 66, which means the resonator is in its ground state approximately 2% of the time, while being coupled to a room-temperature thermal environment. At the time of this work, this is the closest a mesoscopic mechanical resonator has been to its ground-state of motion at room temperature, and this work begins to open the door to room-temperature quantum control of mechanical objects.

Chapter 4 begins with the realization that the displacement resolutions achieved by optomechanical systems can surpass those of conventional MEMS sensors by an order of magnitude or more. This provides the motivation to develop and calibrate an optomechanical accelerometer with a resolution of approximately 10 micro-g/rt-Hz over a bandwidth of approximately 30 kHz. In chapter 5, we improve upon the performance and practicality of this sensor by greatly increasing the test mass size, investigating and reducing low-frequency noise, and incorporating more robust optical coupling techniques and capacitive wavelength tuning. Finally, in chapter 6 we present our progress towards developing another optomechanical inertial sensor - a gyroscope.