8 resultados para He-Ne

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.

Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.

The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.

The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PART I

The total cross-section for the reaction 21Ne(α, n)24Mg has been measured in the energy range 1.49 Mev ≤ Ecm ≤ 2.6 Mev. The cross-section factor, S(O), for this reaction has been determined, by means of an optical model calculation, to be in the range 1.52 x 1012 mb-Mev to 2.67 x 1012 mb-Mev, for interaction radii in the range 5.0 fm to 6.6 fm. With S(O) ≈ 2 x 1012 mb-Mev, the reaction 21Ne(α, n)24Mg can produce a large enough neutron flux to be a significant astrophysical source of neutrons.

PART II

The reaction12C(3He, p)14N has been studied over the energy range 12 Mev ≤ Elab ≤ 18 Mev. Angular distributions of the proton groups leading to the lowest seven levels in 14N were obtained.

Distorted wave calculations, based on two-nucleon transfer theory, were performed, and were found to be reliable for obtaining the value of the orbital angular momentum transferred. The present work shows that such calculations do not yield unambiguous values for the spectroscopic factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The (He3, n) reactions on B11, N15, O16, and O18 targets have been studied using a pulsed-beam time-of-flight spectrometer. Special emphasis was placed upon the determination of the excitation energies and properties of states with T = 1 (in Ne18), T = 3/2 (in N13 and F17) and T = 2 (in Ne20). The identification of the T = 3/2 and T = 2 levels is based on the structure of these states as revealed by intensities and shapes of angular distributions. The reactions are interpreted in terms of double stripping theory. Angular distributions have been compared with plane and distorted wave stripping theories. Results for the four reactions are summarized below:

1) O16 (He3, n). The reaction has been studied at incident energies up to 13.5 MeV and two previously unreported levels in Ne18 were observed at Ex = 4.55 ± .015 MeV (Γ = 70 ± 30 keV) and Ex = 5.14 ± .018 MeV (Γ = 100 ± 40 keV).

2) B11 (He3, n). The reaction has been studied at incident energies up to 13.5 MeV. Three T = 3/2 levels in N13 have been identified at Ex = 15.068 ± .008 MeV (Γ ˂ 15 keV), Ex = 18.44 ± .04, and Ex 18.98 ± .02 MeV (Γ = 40 ± 20 keV).

3) N15 (He3, n). The reaction has been studied at incident energies up to 11.88 MeV. T = 3/2 levels in F17 have been identified at Ex = 11.195 ± .007 MeV (Γ ˂ 20 keV), Ex = 12.540 ± .010 MeV (Γ ˂ 25 keV), and Ex = 13.095 ± .009 MeV (Γ ˂ 25 keV).

4) O18 (He3, n). The reaction has been studied at incident energies up to 9.0 MeV. The excitation energy of the lowest T = 2 level in Ne20 has been found to be 16.730 ± .006 MeV (Γ ˂ 20 keV).

Angular distributions of the transitions leading to the above higher isospin states are well described by double stripping theory. Analog correspondences are established by comparing the present results with recent studies (t, p) and (He3, p) reactions on the same targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report measurements of isotope abundance ratios for 5-50 MeV/nuc nuclei from a large solar flare that occurred on September 23, 1978. The measurements were made by the Heavy Isotope Spectrometer Telescope (HIST) on the ISEE-3 satellite orbiting the Sun near an Earth-Sun libration point approximately one million miles sunward of the Earth. We report finite values for the isotope abundance ratios 13C/12C, 15N/14N, 18O/16O, 22Ne/ 20Ne, 25Mg/24Mg, and 26Mg/24Mg, and upper limits for the isotope abundance ratios 3He/4He, 14C/12C, 17O/16O, and 21Ne/20Ne.

We measured element abundances and spectra to compare the September 23, 1978 flare with other flares reported in the literature. The flare is a typical large flare with "low" Fe/O abundance (≤ 0.1).

For 13C/12C, 15N/14N, 18O/16O, 25Mg/ 24Mg, and 26Mg/24Mg, our measured isotope abundance ratios agree with the solar system abundance ratios of Cameron (1981). For neon we measure 22Ne/20Ne = 0.109 + 0.026 - 0.019, a value that is different with confidence 97.5% from the abundance measured in the solar wind by Geiss at al. (1972) of 22Ne/20Ne = 0.073 ± 0.001. Our measurement for 22Ne/20Ne agrees with the isotopic composition of the meteoritic component neon-A.

Separate arguments appear to rule out simple mass fractionation in the solar wind and in our solar energetic particle measurements as the cause of the discrepancy in the comparison of the apparent compositions of these two sources of solar material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two lowest T = 3/2 levels in 21Na have been studied in the 19F(3He, n), 20Ne (p,p) and 20Ne (p,p’) reactions, and their excitation energies, spins, parities and widths have been determined. In a separate investigation, branching ratios were measured for the isospin-nonconserving particle decays of the lowest T = 3/2 levels in 17O and 17F to the ground state and first two excited states of 16O, by studying the 15N(3He,n) 17F*(p) 16O and 18O(3He, α)17O*(n) 16O reactions.

The 19F(3He,n) 21Na reaction was studied at incident energies between 4.2 and 5.9 MeV using a pulsed-beam neutron-time-of-flight spectrometer. Two T = 3/2 levels were identified at excitation energies of 8.99 ± 0.05 MeV (J > ½) and 9.22 ± 0.015 MeV (J π = ½+, Γ ˂ 40 keV). The spins and parities were determined by a comparison of the measured angular distributions with the results of DWBA calculations.

These two levels were also obsesrved as isospin-forbidden resonances in the 20Ne(p,p) and 20Ne(p,p’) reactions. Excitation energies were measured and spins, parities, and widths were determined from a single level dispersion theory analysis. The following results were obtained:

Ex = 8.973 ± 0.007 MeV, J π = 5/2 + or 3/2+, Γ ≤ 1.2 keV,

Γpo = 0.1 ± 0.05 keV; Ex = 9.217 ± 0.007 MeV, Jπ = ½ +,

Γ = 2.3 ± 0.5 keV, Γpo = 1.1 ± 0.3 keV.

Isospin assignments were made on the basis of excitation energies, spins, parities, and widths.

Branching ratios for the isospin-nonconserving proton decays of the 11.20 MeV, T = 3/2 level in 17F were measured by the 15N(3He,n) 17 F*(p) 16O reaction to be 0.088 ± 0.016 to the ground state of 16O and 0.22 ± 0.04 to the unresolved 6.05 and 6.13 MeV levels of 16O. Branching ratios for the neutron decays of the analogous T = 3/2 level, at 11.08 MeV in 17O, were measured by the 16O(3He, α)17O*(n)16O reaction to be 0.91 ± 0.15 to the ground state of 16O and 0.05 ± 0.02 to the unresolved 6.05 and 6.13 MeV states. By comparing the ratios of reduced widths for the mirror decays, the form of the isospin impurity in the T = 3/2 levels is shown to depend on Tz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cataphoretic purification of helium was investigated for binary mixtures of He with Ar, Ne, N2, O2, CO, and CO2 in DC glow discharge. An experimental technique was developed to continuously measure the composition in the anode end-bulb without sample withdrawal. Discharge currents ranged from 10 ma to 100 ma. Total gas pressure ranged from 2 torr to 9 torr. Initial compositions of the minority component in He ranged from 1.2 mole percent to 7.5 mole percent.

The cataphoretic separation of Ar and Ne from He was found to be in agreement with previous investigators. The cataphoretic separation of N2, O2, and CO from He was found to be similar to noble gas systems in that the steady-state separation improved with (1) increasing discharge current, (2) increasing gas pressure, and (3) decreasing initial composition of the minority component. In the He-CO2 mixture, the CO2 dissociated to CO plus O2. The fraction of CO2 dissociated was directly proportional to the current and pressure and independent of initial composition.

The experimental results for the separation of Ar, Ne, N2, O2, and CO from He were interpreted in the framework of a recently proposed theoretical model involving an electrostatic Peclet number. In the model the electric field was assumed to be constant. This assumption was checked experimentally and the maximum variation in electric field was 35% in time and 30% in position. Consequently, the assumption of constant electric field introduced no more than 55% variation in the electrostatic Peclet number during a separation.

To aid in the design of new cataphoretic systems, the following design criteria were developed and tested in detail: (1) electric field independent of discharge current, (2) electric field directly proportional to total pressure, (3) ion fraction of impurity directly proportional to discharge current, and (4) ion fraction of impurity independent of total pressure. Although these assumptions are approximate, they enabled the steady-state concentration profile to be predicted to within 25% for 75% of the data. The theoretical model was also tested with respect to the characteristic time associated with transient cataphoresis. Over 80% of the data was within a factor of two of the calculated characteristic times.

The electrostatic Peclet number ranged in value from 0.13 to 4.33. Back-calculated ion fractions of the impurity component ranged in value from 4.8x10-6 to 178x10-6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions produced by the He3 bombardment of the He3 have been investigated for bombarding energies from 1 to 20 MeV using a tandem Van de Graaff accelerator. Proton spectra from the three-body reaction He3(He3, 2p)He4 have been measured with a counter telescope at 13 angles for 9 bombarding energies between 3 and 18 MeV. The results are compared with a model for the reaction which includes a strong p-He4 final-state interaction. Alpha-particle spectra have been obtained at 12 and 18 MeV for forward angles with a magnetic spectrometer. These spectra indicate a strongly forward-peaked mechanism involving the 1S0 p-p interaction in addition to the p-He4 interaction. Measurements of p-He4 and p-p coincidence spectra at 10 MeV confirm these features of the reaction mechanism. Deuteron spectra from the reaction of He3(He3, d)pHe3 have been measured at 18 MeV. A triton spectrum from the reaction He3(He3, t)3p at 20 MeV and 40 is interpreted in terms of a sequential decay through an excited state of the alpha particle at 20.0 MeV. No effects are observed which would indicate an interaction in the residual (3p) system. Below 3 MeV the He3(He3, 2p)He4 reaction mechanism is observed to be changing and further measurements are suggested in view of the importance of this reaction in stellar interiors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using track detectors we have measured sputtering yields induced by MeV light ions incident on a uranium containing glass, UO2 and UF4. No deviation from the behavior predicted by the Sigmund theory was detected in the glass or the UO2. The same was true for UF4 bombarded with 4He at 1 MeV and with 16O and 20Ne at 100 keV. In contrast to this, 4.75 MeV 19F(+2) sputters uranium from UF4 with a yield of 5.6 ± 1.0, which is about 3 orders of magnitude larger than expected from the Sigmund theory. The energy dependence of the yield indicates that it is generated by electronic rather than nuclear stopping processes. The yield depends on the charge state of the incident fluorine but not on the target temperature. We have also measured the energy spectrum of the uranium sputtered from the UF4. Ion explosions, thermal spikes, chemical rearrangement and induced desorption are considered as possible explanations for the anomalous yields.