7 resultados para Free Banach space

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.

The following is my formulation of the Cesari fixed point method:

Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.

Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:

(i) Py = PWy.

(ii) y = (P + (I - P)W)y.

Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:

(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).

(2) The function y just defined is continuous from PГ into B.

(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.

Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).

The three theorems of this thesis can now be easily stated.

Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.

Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:

(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖

(2)P2Г is convex.

Then i(Г, W, P1) = i(Г, W, P2).

Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).

Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

If E and F are real Banach spaces let Cp,q(E, F) O ≤ q ≤ p ≤ ∞, denote those maps from E to F which have p continuous Frechet derivatives of which the first q derivatives are bounded. A Banach space E is defined to be Cp,q smooth if Cp,q(E,R) contains a nonzero function with bounded support. This generalizes the standard Cp smoothness classification.

If an Lp space, p ≥ 1, is Cq smooth then it is also Cq,q smooth so that in particular Lp for p an even integer is C∞,∞ smooth and Lp for p an odd integer is Cp-1,p-1 smooth. In general, however, a Cp smooth B-space need not be Cp,p smooth. Co is shown to be a non-C2,2 smooth B-space although it is known to be C smooth. It is proved that if E is Cp,1 smooth then Co(E) is Cp,1 smooth and if E has an equivalent Cp norm then co(E) has an equivalent Cp norm.

Various consequences of Cp,q smoothness are studied. If f ϵ Cp,q(E,F), if F is Cp,q smooth and if E is non-Cp,q smooth, then the image under f of the boundary of any bounded open subset U of E is dense in the image of U. If E is separable then E is Cp,q smooth if and only if E admits Cp,q partitions of unity; E is Cp,psmooth, p ˂∞, if and only if every closed subset of E is the zero set of some CP function.

f ϵ Cq(E,F), 0 ≤ q ≤ p ≤ ∞, is said to be Cp,q approximable on a subset U of E if for any ϵ ˃ 0 there exists a g ϵ Cp(E,F) satisfying

sup/xϵU, O≤k≤q ‖ Dk f(x) - Dk g(x) ‖ ≤ ϵ.

It is shown that if E is separable and Cp,q smooth and if f ϵ Cq(E,F) is Cp,q approximable on some neighborhood of every point of E, then F is Cp,q approximable on all of E.

In general it is unknown whether an arbitrary function in C1(l2, R) is C2,1 approximable and an example of a function in C1(l2, R) which may not be C2,1 approximable is given. A weak form of C∞,q, q≥1, to functions in Cq(l2, R) is proved: Let {Uα} be a locally finite cover of l2 and let {Tα} be a corresponding collection of Hilbert-Schmidt operators on l2. Then for any f ϵ Cq(l2,F) such that for all α

sup ‖ Dk(f(x)-g(x))[Tαh]‖ ≤ 1.

xϵUα,‖h‖≤1, 0≤k≤q

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I. Existence and Structure of Bifurcation Branches

The problem of bifurcation is formulated as an operator equation in a Banach space, depending on relevant control parameters, say of the form G(u,λ) = 0. If dimN(G_u(u_O,λ_O)) = m the method of Lyapunov-Schmidt reduces the problem to the solution of m algebraic equations. The possible structure of these equations and the various types of solution behaviour are discussed. The equations are normally derived under the assumption that G^O_λεR(G^O_u). It is shown, however, that if G^O_λεR(G^O_u) then bifurcation still may occur and the local structure of such branches is determined. A new and compact proof of the existence of multiple bifurcation is derived. The linearized stability near simple bifurcation and "normal" limit points is then indicated.

II. Constructive Techniques for the Generation of Solution Branches

A method is described in which the dependence of the solution arc on a naturally occurring parameter is replaced by the dependence on a form of pseudo-arclength. This results in continuation procedures through regular and "normal" limit points. In the neighborhood of bifurcation points, however, the associated linear operator is nearly singular causing difficulty in the convergence of continuation methods. A study of the approach to singularity of this operator yields convergence proofs for an iterative method for determining the solution arc in the neighborhood of a simple bifurcation point. As a result of these considerations, a new constructive proof of bifurcation is determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An exciting frontier in quantum information science is the integration of otherwise "simple'' quantum elements into complex quantum networks. The laboratory realization of even small quantum networks enables the exploration of physical systems that have not heretofore existed in the natural world. Within this context, there is active research to achieve nanoscale quantum optical circuits, for which atoms are trapped near nano-scopic dielectric structures and "wired'' together by photons propagating through the circuit elements. Single atoms and atomic ensembles endow quantum functionality for otherwise linear optical circuits and thereby enable the capability of building quantum networks component by component. Toward these goals, we have experimentally investigated three different systems, from conventional to rather exotic systems : free-space atomic ensembles, optical nano fibers, and photonics crystal waveguides. First, we demonstrate measurement-induced quadripartite entanglement among four quantum memories. Next, following the landmark realization of a nanofiber trap, we demonstrate the implementation of a state-insensitive, compensated nanofiber trap. Finally, we reach more exotic systems based on photonics crystal devices. Beyond conventional topologies of resonators and waveguides, new opportunities emerge from the powerful capabilities of dispersion and modal engineering in photonic crystal waveguides. We have implemented an integrated optical circuit with a photonics crystal waveguide capable of both trapping and interfacing atoms with guided photons, and have observed the collective effect, superradiance, mediated by the guided photons. These advances provide an important capability for engineered light-matter interactions, enabling explorations of novel quantum transport and quantum many-body phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we uncover a new relation which links thermodynamics and information theory. We consider time as a channel and the detailed state of a physical system as a message. As the system evolves with time, ever present noise insures that the "message" is corrupted. Thermodynamic free energy measures the approach of the system toward equilibrium. Information theoretical mutual information measures the loss of memory of initial state. We regard the free energy and the mutual information as operators which map probability distributions over state space to real numbers. In the limit of long times, we show how the free energy operator and the mutual information operator asymptotically attain a very simple relationship to one another. This relationship is founded on the common appearance of entropy in the two operators and on an identity between internal energy and conditional entropy. The use of conditional entropy is what distinguishes our approach from previous efforts to relate thermodynamics and information theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DC and transient measurements of space-charge-limited currents through alloyed and symmetrical n^+ν n^+ structures made of nominally 75 kΩcm ν-type silicon are studied before and after the introduction of defects by 14 MeV neutron radiation. In the transient measurements, the current response to a large turn-on voltage step is analyzed. Right after the voltage step is applied, the current transient reaches a value which we shall call "initial current" value. At longer times, the transient current decays from the initial current value if traps are present.

Before the irradiation, the initial current density-voltage characteristics J(V) agree quantitatively with the theory of trap-free space-charge-limited current in solids. We obtain for the electron mobility a temperature dependence which indicates that scattering due to impurities is weak. This is expected for the high purity silicon used. The drift velocity-field relationships for electrons at room temperature and 77°K, derived from the initial current density-voltage characteristics, are shown to fit the relationships obtained with other methods by other workers. The transient current response for t > 0 remains practically constant at the initial value, thus indicating negligible trapping.

Measurement of the initial (trap-free) current density-voltage characteristics after the irradiation indicates that the drift velocity-field relationship of electrons in silicon is affected by the radiation only at low temperature in the low field range. The effect is not sufficiently pronounced to be readily analyzed and no formal description of it is offered. In the transient response after irradiation for t > 0, the current decays from its initial value, thus revealing the presence of traps. To study these traps, in addition to transient measurements, the DC current characteristics were measured and shown to follow the theory of trap-dominated space-charge-limited current in solids. This theory was applied to a model consisting of two discrete levels in the forbidden band gap. Calculations and experiments agreed and the capture cross-sections of the trapping levels were obtained. This is the first experimental case known to us through which the flow of space-charge-limited current is so simply representable.

These results demonstrate the sensitivity of space-charge-limited current flow as a tool to detect traps and changes in the drift velocity-field relationship of carriers caused by radiation. They also establish that devices based on the mode of space-charge-limited current flow will be affected considerably by any type of radiation capable of introducing traps. This point has generally been overlooked so far, but is obviously quite significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.

Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.

It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.

A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.

Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.