16 resultados para Electronic medication record
em CaltechTHESIS
Resumo:
Inelastic neutron scattering (INS) and nuclear-resonant inelastic x-ray scattering (NRIXS) were used to measure phonon spectra of FeV as a B2- ordered compound and as a bcc solid solution. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2-ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy, which stabilizes the ordered phase to higher temperatures. Ab initio calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.
The phonon spectra of Au-rich alloys of fcc Au-Fe were also measured. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon density of states (DOS) with Fe concentration that increases the miscibility gap temperature. The magnitude of the effect is non- linear and it is reduced at higher Fe concentrations. Force constants were calculated for several compositions and show a local stiffening of Au–Au bonds close to Fe atoms, but Au–Au bonds that are farther away do not show this effect. Phonon DOS curves calculated from the force constants reproduced the experimental trends. The Au–Fe bond is soft and favors ordering, but a charge transfer from the Fe to the Au atoms stiffens the Au–Au bonds enough to favor unmixing. The stiffening is attributed to two main effects comparable in magnitude: an increase in electron density in the free-electron-like states, and stronger sd-hybridization.
INS and NRIXS measurements were performed at elevated temperatures on B2-ordered FeTi and NRIXS measurements were performed at high pressures. The high-pressure behavior is quasi- harmonic. The softening of the phonon DOS curves with temperature is strongly nonharmonic. Calculations of the force constants and Born-von Karman fits to the experimental data show that the bonds between second nearest neighbors (2nn) are much stiffer than those between 1nn, but fits to the high temperature data show that the former softens at a faster rate with temperature. The Fe–Fe bond softens more than the Ti–Ti bond. The unusual stiffness of the 2nn bond is explained by the calculated charge distribution, which is highly aspherical and localized preferentially in the t2g orbitals. Ab initio molecular dynamics (AIMD) simulations show a charge transfer from the t2g orbitals to the eg orbitals at elevated temperatures. The asphericity decreases linearly with temperature and is more severe at the Fe sites.
Resumo:
Chapter I
Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.
Chapter II
A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.
EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.
EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.
Chapter III
A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.
Resumo:
Part I
Studies of vibrational relaxation in excited electronic states of simple diatomic molecules trapped in solid rare-gas matrices at low temperatures are reported. The relaxation is investigated by monitoring the emission intensity from vibrational levels of the excited electronic state to vibrational levels of the ground electronic state. The emission was in all cases excited by bombardment of the doped rare-gas solid with X-rays.
The diatomics studied and the band systems seen are: N2, Vegard-Kaplan and Second Positive systems; O2, Herzberg system; OH and OD, A 2Σ+ - X2IIi system. The latter has been investigated only in solid Ne, where both emission and absorption spectra were recorded; observed fine structure has been partly interpreted in terms of slightly perturbed rotational motion in the solid. For N2, OH, and OD emission occurred from v' > 0, establishing a vibrational relaxation time in the excited electronic state of the order, of longer than, the electronic radiative lifetime. The relative emission intensity and decay times for different v' progressions in the Vegard-Kaplan system are found to depend on the rare-gas host and the N2 concentration, but are independent of temperature in the range 1.7°K to 30°K.
Part II
Static crystal field effects on the absorption, fluorescence, and phosphorescence spectra of isotopically mixed benzene crystals were investigated. Evidence is presented which demonstrate that in the crystal the ground, lowest excited singlet, and lowest triplet states of the guest deviate from hexagonal symmetry. The deviation appears largest in the lowest triplet state and may be due to an intrinsic instability of the 3B1u state. High resolution absorption and phospho- rescence spectra are reported and analyzed in terms of site-splitting of degenerate vibrations and orientational effects. The guest phosphorescence lifetime for various benzene isotopes in C6D6 and sym-C6H3D3 hosts is presented and discussed.
Resumo:
We present a theoretical study of electronic states in topological insulators with impurities. Chiral edge states in 2d topological insulators and helical surface states in 3d topological insulators show a robust transport against nonmagnetic impurities. Such a nontrivial character inspired physicists to come up with applications such as spintronic devices [1], thermoelectric materials [2], photovoltaics [3], and quantum computation [4]. Not only has it provided new opportunities from a practical point of view, but its theoretical study has deepened the understanding of the topological nature of condensed matter systems. However, experimental realizations of topological insulators have been challenging. For example, a 2d topological insulator fabricated in a HeTe quantum well structure by Konig et al. [5] shows a longitudinal conductance which is not well quantized and varies with temperature. 3d topological insulators such as Bi2Se3 and Bi2Te3 exhibit not only a signature of surface states, but they also show a bulk conduction [6]. The series of experiments motivated us to study the effects of impurities and coexisting bulk Fermi surface in topological insulators. We first address a single impurity problem in a topological insulator using a semiclassical approach. Then we study the conductance behavior of a disordered topological-metal strip where bulk modes are associated with the transport of edge modes via impurity scattering. We verify that the conduction through a chiral edge channel retains its topological signature, and we discovered that the transmission can be succinctly expressed in a closed form as a ratio of determinants of the bulk Green's function and impurity potentials. We further study the transport of 1d systems which can be decomposed in terms of chiral modes. Lastly, the surface impurity effect on the local density of surface states over layers into the bulk is studied between weak and strong disorder strength limits.
Resumo:
Kinetic and electronic processes in a Cu/CuCl double pulsed laser were investigated by measuring discharge and laser pulse characteristics, and by computer modeling. There are two time scales inherent to the operation of the Cu/CuCl laser. The first is during the interpulse afterglow (tens to hundreds of microseconds). The second is during the pumping pulse (tens of nanoseconds). It was found that the character of the pumping pulse is largely determined by the initial conditions provided by the interpulse afterglow. By tailoring the dissociation pulse to be long and low energy, and by conditioning the afterglow, one may select the desired initial conditions and thereby significantly improve laser performance. With a low energy dissociation pulse, the fraction of metastable copper obtained from a CuCl dissociation is low. By maintaining the afterglow, contributions to the metastable state from ion recombinations are prevented, and the plasma impedance remains low thereby increasing the rate of current rise during the pumping pulse. Computer models for the dissociation pulse, afterglow, pumping pulse and laser pulse reproduced experimentally observed behavior of laser pulse energy and power as a function of time delay, pumping pulse characteristics, and buffer gas pressure. The sensitivity of laser pulse properties on collisional processes (e.g., CuCl reassociation rates) was investigated.
Resumo:
High-resolution orbital and in situ observations acquired of the Martian surface during the past two decades provide the opportunity to study the rock record of Mars at an unprecedented level of detail. This dissertation consists of four studies whose common goal is to establish new standards for the quantitative analysis of visible and near-infrared data from the surface of Mars. Through the compilation of global image inventories, application of stratigraphic and sedimentologic statistical methods, and use of laboratory analogs, this dissertation provides insight into the history of past depositional and diagenetic processes on Mars. The first study presents a global inventory of stratified deposits observed in images from the High Resolution Image Science Experiment (HiRISE) camera on-board the Mars Reconnaissance Orbiter. This work uses the widespread coverage of high-resolution orbital images to make global-scale observations about the processes controlling sediment transport and deposition on Mars. The next chapter presents a study of bed thickness distributions in Martian sedimentary deposits, showing how statistical methods can be used to establish quantitative criteria for evaluating the depositional history of stratified deposits observed in orbital images. The third study tests the ability of spectral mixing models to obtain quantitative mineral abundances from near-infrared reflectance spectra of clay and sulfate mixtures in the laboratory for application to the analysis of orbital spectra of sedimentary deposits on Mars. The final study employs a statistical analysis of the size, shape, and distribution of nodules observed by the Mars Science Laboratory Curiosity rover team in the Sheepbed mudstone at Yellowknife Bay in Gale crater. This analysis is used to evaluate hypotheses for nodule formation and to gain insight into the diagenetic history of an ancient habitable environment on Mars.
Resumo:
Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance.
An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).
The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.
A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions.
Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions.
Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for any FSG represented electron systems. To achieve this, we start with using exactly derived energy expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT, against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors are then introduced at this level to recover the QM total energies of multiple electron pair systems from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE extension is implemented, and aims at embedding the interactions associated with both the cusp condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H element, and the preliminary results are promising.
Resumo:
Thermoelectric materials have demanded a significant amount of attention for their ability to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics research has led to significant enhancements in the thermoelectric figure of merit, zT, even for materials that were already well studied. This thesis approaches thermoelectric zT optimization by developing a detailed understanding of the electronic structure using a combination of electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band structures. This is accomplished by applying these techniques to three important classes of thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where X=Zr, Ti, Hf), and CoSb3 skutterudites.
In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent optical absorption edge which correlates well to the computed ab-initio molecular dynamics result. Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and PbS, respectively. This finding can help guide electronic properties modelling by providing a concrete value for the band gap and valence band offset as a function of temperature.
Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its optical and electronic properties; transport properties indicate a largely different band gap depending on whether the material is doped n-type or p-type. By measuring and reporting the optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-hole weighted mobility ratio, A, in narrow gap materials (A is found to be approximately 5.0 in ZrNiSn).
I also show that CoSb3 contains multiple conduction bands that contribute to the thermoelectric properties. These bands are also observed to shift towards each other with temperature, eventually reaching effective convergence for T>500 K. This implies that the electronic structure in CoSb3 is critically important (and possibly engineerable) with regards to its high thermoelectric figure of merit.
Resumo:
PART I
The energy spectrum of heavily-doped molecular crystals was treated in the Green’s function formulation. The mixed crystal Green’s function was obtained by averaging over all possible impurity distributions. The resulting Green’s function, which takes the form of an infinite perturbation expansion, was further approximated by a closed form suitable for numerical calculations. The density-of-states functions and optical spectra for binary mixtures of normal naphthalene and deuterated naphthalene were calculated using the pure crystal density-of-state functions. The results showed that when the trap depth is large, two separate energy bands persist, but when the trap depth is small only a single band exists. Furthermore, in the former case it was found that the intensities of the outer Davydov bands are enhanced whereas the inner bands are weakened. Comparisons with previous theoretical calculations and experimental results are also made.
PART II
The energy states and optical spectra of heavily-doped mixed crystals are investigated. Studies are made for the following binary systems: (1) naphthalene-h8 and d8, (2) naphthalene--h8 and αd4, and (3) naphthalene--h8 and βd1, corresponding to strong, medium and weak perturbations. In addition to ordinary absorption spectra at 4˚K, band-to-band transitions at both 4˚K and 77˚K are also analyzed with emphasis on their relations to cooperative excitation and overall density-of-states functions for mixed crystals. It is found that the theoretical calculations presented in a previous paper agree generally with experiments except for cluster states observed in system (1) at lower guest concentrations. These features are discussed semi-quantitatively. As to the intermolecular interaction parameters, it is found that experimental results compare favorably with calculations based on experimental density-of-states functions but not with those based on octopole interactions or charge-transfer interactions. Previous experimental results of Sheka and the theoretical model of Broude and Rashba are also compared with present investigations.
PART III
The phosphorescence, fluorescence and absorption spectra of pyrazine-h4 and d4 have been obtained at 4˚K in a benzene matrix. For comparison, those of the isotopically mixed crystal pyrazine-h4 in d4 were also taken. All these spectra show extremely sharp and well-resolved lines and reveal detailed vibronic structure.
The analysis of the weak fluorescence spectrum resolves the long-disputed question of whether one or two transitions are involved in the near-ultraviolet absorption of pyrazine. The “mirror-image relationship” between absorption and emission shows that the lowest singlet state is an allowed transition, properly designated as 1B3u ← 1A1g. The forbidden component 1B2g, predicted by both “exciton” and MO theories to be below the allowed component, must lie higher. Its exact location still remains uncertain.
The phosphorescence spectrum when compared with the excitation phosphorescence spectra, indicates that the lowest triplet state is also symmetry allowed, showing a strong 0-0 band and a “mirror-image relationship” between absorption and emission. In accordance with previous work, the triplet state is designated as 3B3u.
The vibronic structure of the phosphorescence spectrum is very complicated. Previous work on the analysis of this spectrum all concluded that a long progression of v6a exists. Under the high resolution attainable in our work, the supposed v6a progression proves to have a composite triplet structure, starting from the second member of the progression. Not only is the v9a hydrogen-bending mode present as shown by the appearance of the C-D bending mode in the d4 spectrum, but a band of 1207 cm-1 in the pyrazine in benzene system and 1231 cm-1 in the mixed crystal system is also observed. This band is assigned as 2v6b and of a1g symmetry. Its anonymously strong intensity in the phosphorescence spectrum is interpreted as due to the Fermi resonance with the 2v6a and v9a band.
To help resolve the present controversy over the crystal phosphorescence spectrum of pyrazine, detailed vibrational analyses of the emission spectra were made. The fluorescence spectrum has essentially the same vibronic structure as the phosphorescence spectrum.
Resumo:
I.
Various studies designed to elucidate the electronic structure of the arsenic donor ligand, o-phenylenebisdimethylarsine (diarsine), have been carried out. The electronic spectrum of diarsine has been measured at 300 and 77˚K. Electronic spectra of the molecular complexes of various substituted organoarsines and phosphines with tetracyanoethylene have been measured and used to estimate the relative ionization potentials of these molecules.
Uv photolysis of arsines in frozen solution (96˚K) has yielded thermally labile, paramagnetic products. These include the molecular cations of the photolyzed compounds. The species (diars)+ exhibits hyper-fine splitting due to two equivalent 75As(I=3/2) nuclei. Resonances due to secondary products are reported and assignments discussed.
Evidence is presented for the involvement of d-orbitals in the bonding of arsines. In (diars)+ there is mixing of arsenic “lone-pair” orbitals with benzene ring π-orbitals.
II.
Detailed electronic spectral measurements at 300 and 77˚K have been carried out on five-coordinate complexes of low-spin nickel(II), including complexes of both trigonal bipyramidal (TBP) and square pyramidal (SPY) geometry. TBP complexes are of the form NiLX+ (X=halide or cyanide,
L = Qƭ(CH2)3As(CH3)2]3 or
P [hexagon - Q'CH3] , Q = P, As,
Q’=S, Se).
The electronic spectra of these compounds exhibit a novel feature at low temperature. The first ligand field band, which is asymmetric in the room temperature solution spectrum, is considerably more symmetrical at 77˚K. This effect is interpreted in terms of changes in the structure of the complex.
The SPY complexes are of the form Ni(diars)2Xz (X=CL, Br, CNS, CN, thiourea, NO2, As). On the basis of the spectral results, the d-level ordering is concluded to be xy ˂ xz, yz ˂ z2 ˂˂ x2 - y2. Central to this interpretation is identification of the symmetry-allowed 1A1 → 1E (xz, yz → x2 - y2) transition. This assignment was facilitated by the low temperature measurements.
An assignment of the charge-transfer spectra of the five-coordinate complexes is reported, and electronic spectral criteria for distinguishing the two limiting geometries are discussed.
Resumo:
A study is made of the accuracy of electronic digital computer calculations of ground displacement and response spectra from strong-motion earthquake accelerograms. This involves an investigation of methods of the preparatory reduction of accelerograms into a form useful for the digital computation and of the accuracy of subsequent digital calculations. Various checks are made for both the ground displacement and response spectra results, and it is concluded that the main errors are those involved in digitizing the original record. Differences resulting from various investigators digitizing the same experimental record may become as large as 100% of the maximum computed ground displacements. The spread of the results of ground displacement calculations is greater than that of the response spectra calculations. Standardized methods of adjustment and calculation are recommended, to minimize such errors.
Studies are made of the spread of response spectral values about their mean. The distribution is investigated experimentally by Monte Carlo techniques using an electric analog system with white noise excitation, and histograms are presented indicating the dependence of the distribution on the damping and period of the structure. Approximate distributions are obtained analytically by confirming and extending existing results with accurate digital computer calculations. A comparison of the experimental and analytical approaches indicates good agreement for low damping values where the approximations are valid. A family of distribution curves to be used in conjunction with existing average spectra is presented. The combination of analog and digital computations used with Monte Carlo techniques is a promising approach to the statistical problems of earthquake engineering.
Methods of analysis of very small earthquake ground motion records obtained simultaneously at different sites are discussed. The advantages of Fourier spectrum analysis for certain types of studies and methods of calculation of Fourier spectra are presented. The digitizing and analysis of several earthquake records is described and checks are made of the dependence of results on digitizing procedure, earthquake duration and integration step length. Possible dangers of a direct ratio comparison of Fourier spectra curves are pointed out and the necessity for some type of smoothing procedure before comparison is established. A standard method of analysis for the study of comparative ground motion at different sites is recommended.
Resumo:
Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.
As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.
The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.
Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.
Resumo:
Yields were measured for 235U sputtered from UF4 by 16O, 19F, and 35Cl over the energy range ~.12 to 1.5 MeV/ amu sing a charge equilibrated beam in the stripped beam arrangement for all the incident ions and in the transmission arrangement for 19F and 35Cl. In addition, yields were measured for 19F incident in a wide range of discrete charge states. The angular dependence of all the measured yields were consistent with cosʋ. The stripped beam and transmission data were well fit by the form (Az2eqln(BƐ)/Ɛ)4 (where Ɛ was the ion energy in MeV/amu and zeq(Ɛ) was taken from Zeigler(80). The fitted values of B for the various sets of data were consistent with a constant B0, equal to 36.3 ± 2.7, independent of incident ion. The fitted values of A show no consistent variation with incident ion although a difference can be noted between the stripped beam and transmission values, the transmission values being higher.
The incident charge data were well fit by the assumptions that the sputtering yield depended locally on a power of the incident ion charge and that the sputtering from the surface is exponentially correlated to conditions in the bulk. The equilibrated sputtering yields derived from these data are in agreement with the stripped beam yields.
In addition, to aid in the understanding of these data, the data of Hakansson(80,81a,81b) were examined and contrasted with the UF4 results. The thermal models of Seiberling(80) and Watson(81) were discussed and compared to the data.
Resumo:
Using track detectors we have measured sputtering yields induced by MeV light ions incident on a uranium containing glass, UO2 and UF4. No deviation from the behavior predicted by the Sigmund theory was detected in the glass or the UO2. The same was true for UF4 bombarded with 4He at 1 MeV and with 16O and 20Ne at 100 keV. In contrast to this, 4.75 MeV 19F(+2) sputters uranium from UF4 with a yield of 5.6 ± 1.0, which is about 3 orders of magnitude larger than expected from the Sigmund theory. The energy dependence of the yield indicates that it is generated by electronic rather than nuclear stopping processes. The yield depends on the charge state of the incident fluorine but not on the target temperature. We have also measured the energy spectrum of the uranium sputtered from the UF4. Ion explosions, thermal spikes, chemical rearrangement and induced desorption are considered as possible explanations for the anomalous yields.
Resumo:
Part I
Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.
Part II
The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.