5 resultados para Economical and feasibility study

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data were taken in 1979-80 by the CCFRR high energy neutrino experiment at Fermilab. A total of 150,000 neutrino and 23,000 antineutrino charged current events in the approximate energy range 25 < E_v < 250GeV are measured and analyzed. The structure functions F2 and xF_3 are extracted for three assumptions about σ_L/σ_T:R=0., R=0.1 and R= a QCD based expression. Systematic errors are estimated and their significance is discussed. Comparisons or the X and Q^2 behaviour or the structure functions with results from other experiments are made.

We find that statistical errors currently dominate our knowledge of the valence quark distribution, which is studied in this thesis. xF_3 from different experiments has, within errors and apart from level differences, the same dependence on x and Q^2, except for the HPWF results. The CDHS F_2 shows a clear fall-off at low-x from the CCFRR and EMC results, again apart from level differences which are calculable from cross-sections.

The result for the the GLS rule is found to be 2.83±.15±.09±.10 where the first error is statistical, the second is an overall level error and the third covers the rest of the systematic errors. QCD studies of xF_3 to leading and second order have been done. The QCD evolution of xF_3, which is independent of R and the strange sea, does not depend on the gluon distribution and fits yield

ʌ_(LO) = 88^(+163)_(-78) ^(+113)_(-70) MeV

The systematic errors are smaller than the statistical errors. Second order fits give somewhat different values of ʌ, although α_s (at Q^2_0 = 12.6 GeV^2) is not so different.

A fit using the better determined F_2 in place of xF_3 for x > 0.4 i.e., assuming q = 0 in that region, gives

ʌ_(LO) = 266^(+114)_(-104) ^(+85)_(-79) MeV

Again, the statistical errors are larger than the systematic errors. An attempt to measure R was made and the measurements are described. Utilizing the inequality q(x)≥0 we find that in the region x > .4 R is less than 0.55 at the 90% confidence level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methodology for the preparation of allenes from propargylic hydrazine precursors under mild conditions is described. Oxidation of the propargylic hydrazines, which can be readily prepared from propargylic alcohols, with either of two azo oxidants, diethyl azodicarboxylate (DEAD) or 4-methyl 1,2-triazoline-3,5-dione (MTAD), effects conversion to the allenes, presumably via sigmatropic rearrangement of a monoalkyl diazene intermediate. This rearrangement is demonstrated to proceed with essentially complete stereospecificity. The application of this methodology to the preparation of other allenes, including two that are notable for their reactivity and thermal instability, is also described.

The structural and mechanistic study of a monoalkyl diazene intermediate in the oxidative transformation of propargylic hydrazines to allenes is described. The use of long-range heteronuclear NMR coupling constants for assigning monoalkyl diazene stereochemistry (E vs Z) is also discussed. Evidence is presented that all known monoalkyl diazenes are the E isomers, and the erroneous assignment of stereochemistry in the previous report of the preparation of (Z)-phenyldiazene is discussed.

The synthesis, characterization, and reactivity of 1,6-didehydro[10]annulene are described. This molecule has been recognized as an interesting synthetic target for over 40 years and represents the intersection of two sets of extensively studied molecules: nonbenzenoid aromatic compounds and molecules containing sterically compressed π-systems.The formation of 1,5-dehydronaphthalene from 1 ,6-didehydro[10]annulene is believed to be the prototype for cycloaromatizations that produce 1,4-dehydroaromatic species with the radical centers disposed anti about the newly formed single bond. The aromaticity of this annulene and the facility of its cycloaromatization are also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.

This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.

One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.

One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.

Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.

As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.

Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.

We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.

We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.

In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumption of addictive substances poses a challenge to economic models of rational, forward-looking agents. This dissertation presents a theoretical and empirical examination of consumption of addictive goods.

The theoretical model draws on evidence from psychology and neurobiology to improve on the standard assumptions used in intertemporal consumption studies. I model agents who may misperceive the severity of the future consequences from consuming addictive substances and allow for an agent's environment to shape her preferences in a systematic way suggested by numerous studies that have found craving to be induced by the presence of environmental cues associated with past substance use. The behavior of agents in this behavioral model of addiction can mimic the pattern of quitting and relapsing that is prevalent among addictive substance users.

Chapter 3 presents an empirical analysis of the Becker and Murphy (1988) model of rational addiction using data on grocery store sales of cigarettes. This essay empirically tests the model's predictions concerning consumption responses to future and past price changes as well as the prediction that the response to an anticipated price change differs from the response to an unanticipated price change. In addition, I consider the consumption effects of three institutional changes that occur during the time period 1996 through 1999.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1-6 MeV electron flux at 1 AU has been measured for the time period October 1972 to December 1977 by the Caltech Electron/Isotope Spectrometers on the IMP-7 and IMP-8 satellites. The non-solar interplanetary electron flux reported here covered parts of five synodic periods. The 88 Jovian increases identified in these five synodic periods were classified by their time profiles. The fall time profiles were consistent with an exponential fall with τ ≈ 4-9 days. The rise time profiles displayed a systematic variation over the synodic period. Exponential rise time profiles with τ ≈ 1-3 days tended to occur in the time period before nominal connection, diffusive profiles predicted by the convection-diffusion model around nominal connection, and abrupt profiles after nominal connection.

The times of enhancements in the magnetic field, │B│, at 1 AU showed a better correlation than corotating interaction regions (CIR's) with Jovian increases and other changes in the electron flux at 1 AU, suggesting that │B│ enhancements indicate the times that barriers to electron propagation pass Earth. Time sequences of the increases and decreases in the electron flux at 1 AU were qualitatively modeled by using the times that CIR's passed Jupiter and the times that │B│ enhancements passed Earth.

The electron data observed at 1 AU were modeled by using a convection-diffusion model of Jovian electron propagation. The synodic envelope formed by the maxima of the Jovian increases was modeled by the envelope formed by the predicted intensities at a time less than that needed to reach equilibrium. Even though the envelope shape calculated in this way was similar to the observed envelope, the required diffusion coefficients were not consistent with a diffusive process.

Three Jovian electron increases at 1 AU for the 1974 synodic period were fit with rise time profiles calculated from the convection-diffusion model. For the fits without an ambient electron background flux, the values for the diffusion coefficients that were consistent with the data were kx = 1.0 - 2.5 x 1021 cm2/sec and ky = 1.6 - 2.0 x 1022 cm2/sec. For the fits that included the ambient electron background flux, the values for the diffusion coefficients that were consistent with the data were kx = 0.4 - 1.0 x 1021 cm2/sec and ky = 0.8 - 1.3 x 1022 cm2/sec.