7 resultados para Discontinuous vector fields

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.

The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the results of an experimental investigation of the initiation of brittle fracture and the nature of discontinuous yielding in small plastic enclaves in an annealed mild steel. Upper and lower yield stress data have been obtained from unnotched specimens and nominal fracture stress data have been obtained from specimens of two scale factors and two grain sizes over a range of nominal stress rates from 10^2 to 10^7 lb/in.^2 sec at -111°F and -200°F. The size and shape of plastic enclaves near the notches were revealed by an etch technique.

A stress analysis utilizing slip-line field theory in the plastic region has been developed for the notched specimen geometry employed in this investigation. The yield stress of the material in the plastic enclaves near the notch root has been correlated with the lower yield stress measured on unnotched specimens through a consideration of the plastic boundary velocity under dynamic loading. A maximum tensile stress of about 122,000 lb/in.^2 at the instant of fracture initiation was calculated with the aid of the stress analysis for the large scale specimens of ASTM grain size 8 1/4.

The plastic strain state adjacent to a plastic-elastic interface has been shown to cause the maximum shear stress to have a larger value on the elastic than the plastic side of the interface. This characteristic of dis continuous yielding is instrumental in causing the plastic boundaries to be nearly parallel to the slip-line field where the plastic strain is of the order of the Lüder's strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let L be the algebra of all linear transformations on an n-dimensional vector space V over a field F and let A, B, ƐL. Let Ai+1 = AiB - BAi, i = 0, 1, 2,…, with A = Ao. Let fk (A, B; σ) = A2K+1 - σ1A2K-1 + σ2A2K-3 -… +(-1)KσKA1 where σ = (σ1, σ2,…, σK), σi belong to F and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that fn(A, B; σ) = 0 if σi is the ith elementary symmetric function of (β4- βs)2, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β4 are the characteristic roots of B. In this thesis we discuss relations involving fk(X, Y; σ) where X, Y Ɛ L and 1 ≤ k ˂ n. We show: 1. If F is infinite and if for each X Ɛ L there exists σ so that fk(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If F is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X1, X2…Xr belong to the radical of the algebra generated by A and B over F, where Xi has the form f2(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate L, if the characteristic of F does not divide n and if there exists σ so that fk(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of gk(w; σ) = w2K+1 - σ1w2K-1 + σ2w2K-3 - …. +(-1)K σKw over F. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of electromagnetic absorption is presented to explain the changes in surface impedance for Pippard superconductors (ξo ≫λ) due to large static magnetic fields. The static magnetic field penetrating the metal near the surface induces a momentum dependent potential in Bogolubov's equations. Such a potential modifies a quasiparticle's wavefunction and excitation spectrum. These changes affect the behavior of the surface impedance in a way that in large measure agrees with available observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave response of the superconducting state in equilibrium and non-equilibrium configurations was examined experimentally and analytically. Thin film superconductors were mostly studied in order to explore spatial effects. The response parameter measured was the surface impedance.

For small microwave intensity the surface impedance at 10 GHz was measured for a variety of samples (mostly Sn) over a wide range of sample thickness and temperature. A detailed analysis based on the BCS theory was developed for calculating the surface impedance for general thickness and other experimental parameters. Experiment and theory agreed with each other to within the experimental accuracy. Thus it was established that the samples, thin films as well as bulk, were well characterised at low microwave powers (near equilibrium).

Thin films were perturbed by a small dc supercurrent and the effect on the superconducting order parameter and the quasiparticle response determined by measuring changes in the surface resistance (still at low microwave intensity and independent of it) due to the induced current. The use of fully superconducting resonators enabled the measurement of very small changes in the surface resistance (< 10-9 Ω/sq.). These experiments yield information regarding the dynamics of the order parameter and quasiparticle systems. For all the films studied the results could be described at temperatures near Tc by the thermodynamic depression of the order parameter due to the static current leading to a quadratic increase of the surface resistance with current.

For the thinnest films the low temperature results were surprising in that the surface resistance decreased with increasing current. An explanation is proposed according to which this decrease occurs due to an additional high frequency quasiparticle current caused by the combined presence of both static and high frequency fields. For frequencies larger than the inverse of the quasiparticle relaxation time this additional current is out of phase (by π) with the microwave electric field and is observed as a decrease of surface resistance. Calculations agree quantitatively with experimental results. This is the first observation and explanation of this non-equilibrium quasiparticle effect.

For thicker films of Sn, the low temperature surface resistance was found to increase with applied static current. It is proposed that due to the spatial non-uniformity of the induced current distribution across the thicker films, the above purely temporal analysis of the local quasiparticle response needs to be generalised to include space and time non-equilibrium effects.

The nonlinear interaction of microwaves arid superconducting films was also examined in a third set of experiments. The surface impedance of thin films was measured as a function of the incident microwave magnetic field. The experiments exploit the ability to measure the absorbed microwave power and applied microwave magnetic field absolutely. It was found that the applied surface microwave field could not be raised above a certain threshold level at which the absorption increased abruptly. This critical field level represents a dynamic critical field and was found to be associated with the penetration of the app1ied field into the film at values well below the thermodynamic critical field for the configuration of a field applied to one side of the film. The penetration occurs despite the thermal stability of the film which was unequivocally demonstrated by experiment. A new mechanism for such penetration via the formation of a vortex-antivortex pair is proposed. The experimental results for the thinnest films agreed with the calculated values of this pair generation field. The observations of increased transmission at the critical field level and suppression of the process by a metallic ground plane further support the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equations of relativistic, perfect-fluid hydrodynamics are cast in Eulerian form using six scalar "velocity-potential" fields, each of which has an equation of evolution. These equations determine the motion of the fluid through the equation

Uʋ-1 (ø,ʋ + αβ,ʋ + ƟS,ʋ).

Einstein's equations and the velocity-potential hydrodynamical equations follow from a variational principle whose action is

I = (R + 16π p) (-g)1/2 d4x,

where R is the scalar curvature of spacetime and p is the pressure of the fluid. These equations are also cast into Hamiltonian form, with Hamiltonian density –T00 (-goo)-1/2.

The second variation of the action is used as the Lagrangian governing the evolution of small perturbations of differentially rotating stellar models. In Newtonian gravity this leads to linear dynamical stability criteria already known. In general relativity it leads to a new sufficient condition for the stability of such models against arbitrary perturbations.

By introducing three scalar fields defined by

ρ ᵴ = λ + x(xi + i)

(where ᵴ is the vector displacement of the perturbed fluid element, ρ is the mass-density, and i, is an arbitrary vector), the Newtonian stability criteria are greatly simplified for the purpose of practical applications. The relativistic stability criterion is not yet in a form that permits practical calculations, but ways to place it in such a form are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.

Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.