6 resultados para Desorption
em CaltechTHESIS
Resumo:
The organometallic chemistry of the hexagonally close-packed Ru(001) surface has been studied using electron energy loss spectroscopy and thermal desorption mass spectrometry. The molecules that have been studied are acetylene, formamide and ammonia. The chemistry of acetylene and formamide has also been investigated in the presence of coadsorbed hydrogen and oxygen adatoms.
Acetylene is adsorbed molecularly on Ru(001) below approximately 230 K, with rehybridization of the molecule to nearly sp^3 occurring. The principal decomposition products at higher temperatures are ethylidyne (CCH_3) and acetylide (CCH) between 230 and 350 K, and methylidyne (CH) and surface carbon at higher temperatures. Some methylidyne is stable to approximately 700 K. The preadsorption of hydrogen does not alter the decomposition products of acetylene, but reduces the saturation coverage and also leads to the formation of a small amount of ethylene (via an η^2-CHCH_2 species) which desorbs molecularly near 175 K. Preadsorbed oxygen also reduces the saturation coverage of acetylene but has virtually no effect on the nature of the molecularly chemisorbed acetylene. It does, however, lead to the formation of an sp^2-hybridized vinylidene (CCH_2) species in the decomposition of acetylene, in addition to the decomposition products that are formed on the clean surface. There is no molecular desorption of chemisorbed acetylene from clean Ru(001), hydrogen-presaturated Ru(001), or oxygen-presaturated Ru(001).
The adsorption and decomposition of formamide has been studied on clean Ru(001), hydrogen-presaturated Ru(001), and Ru(001)-p(1x2)-O (oxygen adatom coverage = 0.5). On clean Ru(001), the adsorption of low coverages of formamide at 80 K results in CH bond cleavage and rehybridization of the carbonyl double bond to produce an η^2 (C,O)-NH_2CO species. This species is stable to approximately 250 K at which point it decomposes to yield a mixture of coadsorbed carbon monoxide, ammonia, an NH species and hydrogen adatoms. The decomposition of NH to hydrogen and nitrogen adatoms occurs between 350 and 400 K, and the thermal desorption products are NH_3 (-315 K), H_2 (-420 K), CO (-480 K) and N_2 (-770 K). At higher formamide coverages, some formamide is adsorbed molecularly at 80 K, leading both to molecular desorption and to the formation of a new surface intermediate between 300 and 375 K that is identified tentatively as η^1(N)-NCHO. On Ru(001)- p(1x2)-O and hydrogen-presaturated Ru(001), formamide adsorbs molecularly at 80 K in an η^1(O)- NH_2CHO configuration. On the oxygen-precovered surface, the molecularly adsorbed formamide undergoes competing desorption and decomposition, resulting in the formation of an η^2(N,O)-NHCHO species (analogous to a bidentate formate) at approximately 265 K. This species decomposes near 420 K with the evolution of CO and H_2 into the gas phase. On the hydrogen precovered surface, the Η^1(O)-NH_2CHO converts below 200 K to η^2(C,O)-NH_2CHO and η^2(C,O)-NH^2CO, with some molecular desorption occurring also at high coverage. The η^2(C,O)-bonded species decompose in a manner similar to the decomposition of η^2(C,O)-NH_2CO on the clean surface, although the formation of ammonia is not detected.
Ammonia adsorbs reversibly on Ru(001) at 80 K, with negligible dissociation occurring as the surface is annealed The EEL spectra of ammonia on Ru(001) are very similar to those of ammonia on other metal surfaces. Off-specular EEL spectra of chemisorbed ammonia allow the v(Ru-NH_3) and ρ(NH_3) vibrational loss features to be resolved near 340 and 625 cm^(-1), respectively. The intense δ_g (NH_3) loss feature shifts downward in frequency with increasing ammonia coverage, from approximately 1160 cm^(-1) in the low coverage limit to 1070 cm^(-1) at saturation. In coordination compounds of ammonia, the frequency of this mode shifts downward with decreasing charge on the metal atom, and its downshift on Ru(001) can be correlated with the large work function decrease that the surface has previously been shown to undergo when ammonia is adsorbed. The EELS data are consistent with ammonia adsorption in on-top sites. Second-layer and multilayer ammonia on Ru(001) have also been characterized vibrationally, and the results are similar to those obtained for other metal surfaces.
Resumo:
Quantitative investigations of the mechanisms and the kinetics of the surface-catalyzed activation of C-H, N-H, C-C, and C-N bonds on the close-packed surfaces of Ir(111) and Ru(001) have been performed. The interaction of CH_3NH_2 with Ru(001) was investigated in ultrahigh vacuum with the techniques of high-resolution electron energy loss spectroscopy and thermal desorption mass spectrometry. Activation of the central C-N bond is observed, but it is less favored than the competing channel of complete dehydrogenation, by a ratio between 2:1 to 3:1. The decomposition mechanism has been characterized with several surface intermediates and gas-phase products identified. A pronounced preference for the activation of C-H over N-H and C-N bonds has been established. Additionally, the kinetics of the initial dissociation of short chain alkanes on Ir(111) has been examined, and the rate parameters of the activation of C-C bonds and primary, secondary, and tertiary C-H bonds have been determined. The formation of primary alkyl products is favored, over most of the experimental temperature range, despite the thermodynamic preference for the activation of individual secondary and tertiary C-H bonds in comparison to individual primary C-H bonds. At higher surface temperatures, the activation of C-C bonds occurs at competitive rates to the C-H reaction channel. The measured deuterium kinetic isotope effect implicates substantial deformation of the terminal methyl group in the transition state of C-C bond cleavage. Finally, the surface structure sensitivity of C-H bond cleavage has been quantified for smooth (111) and corrugated (110) surfaces of iridium and platinum, as well as for step edge defect sites on Ir(111).
Resumo:
The interaction of SO_2 with γ - Al_2O_3 and the deposition of H_2 permselective SiO_2 films have been investigated. The adsorption and oxidative adsorption of SO_2 on γ - Al_2O_3 have been examined at temperatures 500-700°C by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). At temperatures above 500°C most of SO_2 adsorbed on the strong sites on alumina. The adsorbed SO_2 species was characterized by an IR band at 1065 cm^(-1). The equilibrium coverage and initial rate of adsorption decreased with temperature suggesting a two-step adsorption. When γ - Al_2O_3 was contacted with a mixture of SO_2 and O_2, adsorption of SO_2 and oxidation of the adsorbed SO_2 to a surface sulfate characterized by broad IR bands at 1070 cm^(-1), 1390 cm^(-1) took place. The results of a series of TGA experiments under different atmospheres strongly suggest that surface SO_2 and surface sulfate involve the same active sites such that SO_2 adsorption is inhibited by already formed sulfate. The results also indicate a broad range of site strengths.
The desorption of adsorbed SO_2 and the reductive desorption of oxidatively adsorbed SO_2 have been investigated by microreactor experiments and thermogravimetric analysis (TGA). Temperature programmed reduction (TPR) of adsorbed SO_2 showed that SO_2 was desorbed without significant reaction with H_2 when H_2 concentration was low while considerable reaction occurred when 100% H_2 was used. SO_2 adsorbed on the strong sites on alumina was reduced to sulfur and H_2S. The isothermal reduction experiments of oxidatively adsorbed SO_2 reveal that the rate of reduction is very slow below 550°C even with 100% H_2. The reduction product is mainly composed of SO_2. TPR experiments of oxidatively adsorbed SO_2 showed that H_2S arose from a sulfate strongly chemisorbed on the surface.
Films of amorphous SiO_2 were deposited within the walls of porous Vycor tubes by SiH_4 oxidation in an opposing reactants geometry : SiH_4 was passed inside the tube while O_2 was passed outside the tube. The two reactants diffused opposite to each other and reacted within a narrow front inside the tube wall to form a thin SiO_2 film. Once the pores were plugged the reactants could not reach each other and the reaction stopped. At 450°C and 0.1 and 0.33 atm of SiH_4 and O_2, the reaction was complete within 15 minutes. The thickness of the SiO_2 film was estimated to be about 0.1 µm. Measurements of H_2 and N_2 permeation rates showed that the SiO_2 film was highly selective to H_2 permeation. The H_2:N_2 flux at 450°C varied between 2000-3000.
Thin SiO_2 films were heat treated in different gas mixtures to determine their stability in functioning as high-temperature hydrogen-permselective membranes. The films were heat-treated at 450-700°C in dry N_2, dry O_2, N_2-H_2O, and O_2-H_2O mixtures. The permeation rates of H_2 and N_2 changed depending on the original conditions of film formation as well as on the heat treatment. Heating in dry N_2 slowly reduced the permeation rates of both H_2 and N_2. Heating in a N_2-H_2O atmosphere led to a steeper decline of H_2 permeability. But the permeation rate of N_2 increased or decreased according to whether the film deposition had been carried out in the absence or presence of H_2O vapor, respectively. Thermal treatment in O_2 caused rapid decline of the permeation rates of H_2 and N_2 in films that were deposited under dry conditions. The decline was moderate in films deposited under wet conditions.
Resumo:
The interactions of N2, formic acid and acetone on the Ru(001) surface are studied using thermal desorption mass spectrometry (TDMS), electron energy loss spectroscopy (EELS), and computer modeling.
Low energy electron diffraction (LEED), EELS and TDMS were used to study chemisorption of N2 on Ru(001). Adsorption at 75 K produces two desorption states. Adsorption at 95 K fills only the higher energy desorption state and produces a (√3 x √3)R30° LEED pattern. EEL spectra indicate both desorption states are populated by N2 molecules bonded "on-top" of Ru atoms.
Monte Carlo simulation results are presented on Ru(001) using a kinetic lattice gas model with precursor mediated adsorption, desorption and migration. The model gives good agreement with experimental data. The island growth rate was computed using the same model and is well fit by R(t)m - R(t0)m = At, with m approximately 8. The island size was determined from the width of the superlattice diffraction feature.
The techniques, algorithms and computer programs used for simulations are documented. Coordinate schemes for indexing sites on a 2-D hexagonal lattice, programs for simulation of adsorption and desorption, techniques for analysis of ordering, and computer graphics routines are discussed.
The adsorption of formic acid on Ru(001) has been studied by EELS and TDMS. Large exposures produce a molecular multilayer species. A monodentate formate, bidentate formate, and a hydroxyl species are stable intermediates in formic acid decomposition. The monodentate formate species is converted to the bidentate species by heating. Formic acid decomposition products are CO2, CO, H2, H2O and oxygen adatoms. The ratio of desorbed CO with respect to CO2 increases both with slower heating rates and with lower coverages.
The existence of two different forms of adsorbed acetone, side-on, bonded through the oxygen and acyl carbon, and end-on, bonded through the oxygen, have been verified by EELS. On Pt(111), only the end-on species is observed. On dean Ru(001) and p(2 x 2)O precovered Ru(001), both forms coexist. The side-on species is dominant on clean Ru(001), while O stabilizes the end-on form. The end-on form desorbs molecularly. Bonding geometry stability is explained by surface Lewis acidity and by comparison to organometallic coordination complexes.
Resumo:
The initial probabilities of activated, dissociative chemisorption of methane and ethane on Pt(110)-(1 x 2) have been measured. The surface temperature was varied from 450 to 900 K with the reactant gas temperature constant at 300 K. Under these conditions, we probe the kinetics of dissociation via trapping-mediated (as opposed to 'direct') mechanism. It was found that the probabilities of dissociation of both methane and ethane were strong functions of the surface temperature with an apparent activation energies of 14.4 kcal/mol for methane and 2.8 kcal/mol for ethane, which implys that the methane and ethane molecules have fully accommodated to the surface temperature. Kinetic isotope effects were observed for both reactions, indicating that the C-H bond cleavage was involved in the rate-limiting step. A mechanistic model based on the trapping-mediated mechanism is used to explain the observed kinetic behavior. The activation energies for C-H bond dissociation of the thermally accommodated methane and ethane on the surface extracted from the model are 18.4 and 10.3 kcal/mol, respectively.
The studies of the catalytic decomposition of formic acid on the Ru(001) surface with thermal desorption mass spectrometry following the adsorption of DCOOH and HCOOH on the surface at 130 and 310 K are described. Formic acid (DCOOH) chemisorbs dissociatively on the surface via both the cleavage of its O-H bond to form a formate and a hydrogen adatom, and the cleavage of its C-O bond to form a carbon monoxide, a deuterium adatom and an hydroxyl (OH). The former is the predominant reaction. The rate of desorption of carbon dioxide is a direct measure of the kinetics of decomposition of the surface formate. It is characterized by a kinetic isotope effect, an increasingly narrow FWHM, and an upward shift in peak temperature with Ɵ_T, the coverage of the dissociatively adsorbed formic acid. The FWHM and the peak temperature change from 18 K and 326 K at Ɵ_T = 0.04 to 8 K and 395 K at Ɵ_T = 0.89. The increase in the apparent activation energy of the C-D bond cleavage is largely a result of self-poisoning by the formate, the presence of which on the surface alters the electronic properties of the surface such that the activation energy of the decomposition of formate is increased. The variation of the activation energy for carbon dioxide formation with Ɵ_T accounts for the observed sharp carbon dioxide peak. The coverage of surface formate can be adjusted over a relatively wide range so that the activation energy for C-D bond cleavage in the case of DCOOH can be adjusted to be below, approximately equal to, or well above the activation energy for the recombinative desorption of the deuterium adatoms. Accordingly, the desorption of deuterium was observed to be governed completely by the desorption kinetics of the deuterium adatoms at low Ɵ_T, jointly by the kinetics of deuterium desorption and C-D bond cleavage at intermediate Ɵ_T, and solely by the kinetics of C-D bond cleavage at high Ɵ_T. The overall branching ratio of the formate to carbon dioxide and carbon monoxide is approximately unity, regardless the initial coverage Ɵ_T, even though the activation energy for the production of carbon dioxide varies with Ɵ_T. The desorption of water, which implies C-O bond cleavage of the formate, appears at approximately the same temperature as that of carbon dioxide. These observations suggest that the cleavage of the C-D bond and that of the C-O bond of two surface formates are coupled, possibly via the formation of a short-lived surface complex that is the precursor to to the decomposition.
The measurement of steady-state rate is demonstrated here to be valuable in determining kinetics associated with short-lived, molecularly adsorbed precursor to further reactions on the surface, by determining the kinetic parameters of the molecular precursor of formaldehyde to its dissociation on the Pt(110)-(1 x 2) surface.
Overlayers of nitrogen adatoms on Ru(001) have been characterized both by thermal desorption mass spectrometry and low-energy electron diffraction, as well as chemically via the postadsorption and desorption of ammonia and carbon monoxide.
The nitrogen-adatom overlayer was prepared by decomposing ammonia thermally on the surface at a pressure of 2.8 x 10^(-6) Torr and a temperature of 480 K. The saturated overlayer prepared under these conditions has associated with it a (√247/10 x √247/10)R22.7° LEED pattern, has two peaks in its thermal desorption spectrum, and has a fractional surface coverage of 0.40. Annealing the overlayer to approximately 535 K results in a rather sharp (√3 x √3)R30° LEED pattern with an associated fractional surface coverage of one-third. Annealing the overlayer further to 620 K results in the disappearance of the low-temperature thermal desorption peak and the appearance of a rather fuzzy p(2x2) LEED pattern with an associated fractional surface coverage of approximately one-fourth. In the low coverage limit, the presence of the (√3 x √3)R30° N overlayer alters the surface in such a way that the binding energy of ammonia is increased by 20% relative to the clean surface, whereas that of carbon monoxide is reduced by 15%.
A general methodology for the indirect relative determination of the absolute fractional surface coverages has been developed and was utilized to determine the saturation fractional coverage of hydrogen on Ru(001). Formaldehyde was employed as a bridge to lead us from the known reference point of the saturation fractional coverage of carbon monoxide to unknown reference point of the fractional coverage of hydrogen on Ru(001), which is then used to determine accurately the saturation fractional coverage of hydrogen. We find that ƟSAT/H = 1.02 (±0.05), i.e., the surface stoichiometry is Ru : H = 1 : 1. The relative nature of the method, which cancels systematic errors, together with the utilization of a glass envelope around the mass spectrometer, which reduces spurious contributions in the thermal desorption spectra, results in high accuracy in the determination of absolute fractional coverages.
Resumo:
Using track detectors we have measured sputtering yields induced by MeV light ions incident on a uranium containing glass, UO2 and UF4. No deviation from the behavior predicted by the Sigmund theory was detected in the glass or the UO2. The same was true for UF4 bombarded with 4He at 1 MeV and with 16O and 20Ne at 100 keV. In contrast to this, 4.75 MeV 19F(+2) sputters uranium from UF4 with a yield of 5.6 ± 1.0, which is about 3 orders of magnitude larger than expected from the Sigmund theory. The energy dependence of the yield indicates that it is generated by electronic rather than nuclear stopping processes. The yield depends on the charge state of the incident fluorine but not on the target temperature. We have also measured the energy spectrum of the uranium sputtered from the UF4. Ion explosions, thermal spikes, chemical rearrangement and induced desorption are considered as possible explanations for the anomalous yields.