8 resultados para Cardiomyopathy, Restrictive

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The question of finding variational principles for coupled systems of first order partial differential equations is considered. Using a potential representation for solutions of the first order system a higher order system is obtained. Existence of a variational principle follows if the original system can be transformed to a self-adjoint higher order system. Existence of variational principles for all linear wave equations with constant coefficients having real dispersion relations is established. The method of adjoining some of the equations of the original system to a suitable Lagrangian function by the method of Lagrange multipliers is used to construct new variational principles for a class of linear systems. The equations used as side conditions must satisfy highly-restrictive integrability conditions. In the more difficult nonlinear case the system of two equations in two independent variables can be analyzed completely. For systems determined by two conservation laws the side condition must be a conservation law in addition to satisfying the integrability conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to interface with and program cellular function remains a challenging research frontier in biotechnology. Although the emerging field of synthetic biology has recently generated a variety of gene-regulatory strategies based on synthetic RNA molecules, few strategies exist through which to control such regulatory effects in response to specific exogenous or endogenous molecular signals. Here, we present the development of an engineered RNA-based device platform to detect and act on endogenous protein signals, linking these signals to the regulation of genes and thus cellular function.

We describe efforts to develop an RNA-based device framework for regulating endogenous genes in human cells. Previously developed RNA control devices have demonstrated programmable ligand-responsive genetic regulation in diverse cell types, and we attempted to adapt this class of cis-acting control elements to function in trans. We divided the device into two strands that reconstitute activity upon hybridization. Device function was optimized using an in vivo model system, and we found that device sequence is not as flexible as previously reported. After verifying the in vitro activity of our optimized design, we attempted to establish gene regulation in a human cell line using additional elements to direct device stability, structure, and localization. The significant limitations of our platform prevented endogenous gene regulation.

We next describe the development of a protein-responsive RNA-based regulatory platform. Employing various design strategies, we demonstrated functional devices that both up- and downregulate gene expression in response to a heterologous protein in a human cell line. The activity of our platform exceeded that of a similar, small-molecule-responsive platform. We demonstrated the ability of our devices to respond to both cytoplasmic- and nuclear-localized protein, providing insight into the mechanism of action and distinguishing our platform from previously described devices with more restrictive ligand localization requirements. Finally, we demonstrated the versatility of our device platform by developing a regulatory device that responds to an endogenous signaling protein.

The foundational tool we present here possesses unique advantages over previously described RNA-based gene-regulatory platforms. This genetically encoded technology may find future applications in the development of more effective diagnostic tools and targeted molecular therapy strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nineteenth century was not an entirely kind time for the female artist. Coming of age as the 1800’s bridged into its latter half, literary artists Elizabeth Stuart Phelps Ward, Charlotte Perkins Gilman, and Kate Chopin were all well aware of their uncharitable culture. Equipped with firm feminist bents and creative visions, each of three women produced a seminal work – The Story of Avis, “The Yellow Wallpaper,” and The Awakening, respectively – taking that atmosphere to task. In these stories, each of the three women produces a female protagonist who struggles for having been born simultaneously an artist and a woman. The writers pit their women’s desires against the restrictive latitude of their time and show how such conditions drive women to madness, as a result of which they are forced to either escape into the blind mind of insanity or deal daily with their pain and inescapable societal condemnation. In an age where “hysteria” was a frequent hit in the vernacular, Phelps, Gilman and Chopin use art and literature as mediums to show that, indeed, there is a method behind the madness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.

In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.

This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.

The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.

The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.

In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.

In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.

Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1964 A. W. Goldie [1] posed the problem of determining all rings with identity and minimal condition on left ideals which are faithfully represented on the right side of their left socle. Goldie showed that such a ring which is indecomposable and in which the left and right principal indecomposable ideals have, respectively, unique left and unique right composition series is a complete blocked triangular matrix ring over a skewfield. The general problem suggested above is very difficult. We obtain results under certain natural restrictions which are much weaker than the restrictive assumptions made by Goldie.

We characterize those rings in which the principal indecomposable left ideals each contain a unique minimal left ideal (Theorem (4.2)). It is sufficient to handle indecomposable rings (Lemma (1.4)). Such a ring is also a blocked triangular matrix ring. There exist r positive integers K1,..., Kr such that the i,jth block of a typical matrix is a Ki x Kj matrix with arbitrary entries in a subgroup Dij of the additive group of a fixed skewfield D. Each Dii is a sub-skewfield of D and Dri = D for all i. Conversely, every matrix ring which has this form is indecomposable, faithfully represented on the right side of its left socle, and possesses the property that every principal indecomposable left ideal contains a unique minimal left ideal.

The principal indecomposable left ideals may have unique composition series even though the ring does not have minimal condition on right ideals. We characterize this situation by defining a partial ordering ρ on {i, 2,...,r} where we set iρj if Dij ≠ 0. Every principal indecomposable left ideal has a unique composition series if and only if the diagram of ρ is an inverted tree and every Dij is a one-dimensional left vector space over Dii (Theorem (5.4)).

We show (Theorem (2.2)) that every ring A of the type we are studying is a unique subdirect sum of less complex rings A1,...,As of the same type. Namely, each Ai has only one isomorphism class of minimal left ideals and the minimal left ideals of different Ai are non-isomorphic as left A-modules. We give (Theorem (2.1)) necessary and sufficient conditions for a ring which is a subdirect sum of rings Ai having these properties to be faithfully represented on the right side of its left socle. We show ((4.F), p. 42) that up to technical trivia the rings Ai are matrix rings of the form

[...]. Each Qj comes from the faithful irreducible matrix representation of a certain skewfield over a fixed skewfield D. The bottom row is filled in by arbitrary elements of D.

In Part V we construct an interesting class of rings faithfully represented on their left socle from a given partial ordering on a finite set, given skewfields, and given additive groups. This class of rings contains the ones in which every principal indecomposable left ideal has a unique minimal left ideal. We identify the uniquely determined subdirect summands mentioned above in terms of the given partial ordering (Proposition (5.2)). We conjecture that this technique serves to construct all the rings which are a unique subdirect sum of rings each having the property that every principal-indecomposable left ideal contains a unique minimal left ideal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we are concerned with finding representations of the algebra of SU(3) vector and axial-vector charge densities at infinite momentum (the "current algebra") to describe the mesons, idealizing the real continua of multiparticle states as a series of discrete resonances of zero width. Such representations would describe the masses and quantum numbers of the mesons, the shapes of their Regge trajectories, their electromagnetic and weak form factors, and (approximately, through the PCAC hypothesis) pion emission or absorption amplitudes.

We assume that the mesons have internal degrees of freedom equivalent to being made of two quarks (one an antiquark) and look for models in which the mass is SU(3)-independent and the current is a sum of contributions from the individual quarks. Requiring that the current algebra, as well as conditions of relativistic invariance, be satisfied turns out to be very restrictive, and, in fact, no model has been found which satisfies all requirements and gives a reasonable mass spectrum. We show that using more general mass and current operators but keeping the same internal degrees of freedom will not make the problem any more solvable. In particular, in order for any two-quark solution to exist it must be possible to solve the "factorized SU(2) problem," in which the currents are isospin currents and are carried by only one of the component quarks (as in the K meson and its excited states).

In the free-quark model the currents at infinite momentum are found using a manifestly covariant formalism and are shown to satisfy the current algebra, but the mass spectrum is unrealistic. We then consider a pair of quarks bound by a potential, finding the current as a power series in 1/m where m is the quark mass. Here it is found impossible to satisfy the algebra and relativistic invariance with the type of potential tried, because the current contributions from the two quarks do not commute with each other to order 1/m3. However, it may be possible to solve the factorized SU(2) problem with this model.

The factorized problem can be solved exactly in the case where all mesons have the same mass, using a covariant formulation in terms of an internal Lorentz group. For a more realistic, nondegenerate mass there is difficulty in covariantly solving even the factorized problem; one model is described which almost works but appears to require particles of spacelike 4-momentum, which seem unphysical.

Although the search for a completely satisfactory model has been unsuccessful, the techniques used here might eventually reveal a working model. There is also a possibility of satisfying a weaker form of the current algebra with existing models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic diseases of the central nervous system are poorly treated due to the inability of most therapeutics to cross the blood-brain barrier. The blood-brain barrier is an anatomical and physiological barrier that severely restricts solute influx, including most drugs, from the blood to the brain. One promising method to overcome this obstacle is to use endogenous solute influx systems at the blood-brain barrier to transport drugs. Therapeutics designed to enter the brain through transcytosis by binding the transferrin receptor, however, are restricted within endothelial cells. The focus of this work was to develop a method to increase uptake of transferrin-containing nanoparticles into the brain by overcoming these restrictive processes.

To accomplish this goal, nanoparticles were prepared with surface transferrin molecules bound through various liable chemical bonds. These nanoparticles were designed to shed the targeting molecule during transcytosis to allow increased accumulation of nanoparticles within the brain.

Transferrin was added to the surface of nanoparticles through either redox or pH sensitive chemistry. First, nanoparticles with transferrin bound through disulfide bonds were prepared. These nanoparticles showed decreased avidity for the transferrin receptor after exposure to reducing agents and increased ability to enter the brain in vivo compared to those lacking the disulfide link.

Next, transferrin was attached through a chemical bond that cleaves at mildly acidic pH. Nanoparticles containing a cleavable link between transferrin and gold nanoparticle cores were found to both cross an in vitro model of the blood-brain barrier and accumulate within the brain in significantly higher numbers than similar nanoparticles lacking the cleavable bond. Also, this increased accumulation was not seen when using this same strategy with an antibody to transferrin receptor, indicating that behavior of nanoparticles at the blood-brain barrier varies depending on what type of targeting ligand is used.

Finally, polymeric nanoparticles loaded with dopamine and utilizing a superior acid-cleavable targeting chemistry were investigated as a potential treatment for Parkinson’s disease. These nanoparticles were capable of increasing dopamine quantities in the brains of healthy mice, highlighting the therapeutic potential of this design. Overall, this work describes a novel method to increase targeted nanoparticle accumulation in the brain.