2 resultados para Banach Sequence Space

em CaltechTHESIS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.

The following is my formulation of the Cesari fixed point method:

Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.

Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:

(i) Py = PWy.

(ii) y = (P + (I - P)W)y.

Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:

(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).

(2) The function y just defined is continuous from PГ into B.

(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.

Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).

The three theorems of this thesis can now be easily stated.

Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.

Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:

(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖

(2)P2Г is convex.

Then i(Г, W, P1) = i(Г, W, P2).

Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).

Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If E and F are real Banach spaces let Cp,q(E, F) O ≤ q ≤ p ≤ ∞, denote those maps from E to F which have p continuous Frechet derivatives of which the first q derivatives are bounded. A Banach space E is defined to be Cp,q smooth if Cp,q(E,R) contains a nonzero function with bounded support. This generalizes the standard Cp smoothness classification.

If an Lp space, p ≥ 1, is Cq smooth then it is also Cq,q smooth so that in particular Lp for p an even integer is C∞,∞ smooth and Lp for p an odd integer is Cp-1,p-1 smooth. In general, however, a Cp smooth B-space need not be Cp,p smooth. Co is shown to be a non-C2,2 smooth B-space although it is known to be C smooth. It is proved that if E is Cp,1 smooth then Co(E) is Cp,1 smooth and if E has an equivalent Cp norm then co(E) has an equivalent Cp norm.

Various consequences of Cp,q smoothness are studied. If f ϵ Cp,q(E,F), if F is Cp,q smooth and if E is non-Cp,q smooth, then the image under f of the boundary of any bounded open subset U of E is dense in the image of U. If E is separable then E is Cp,q smooth if and only if E admits Cp,q partitions of unity; E is Cp,psmooth, p ˂∞, if and only if every closed subset of E is the zero set of some CP function.

f ϵ Cq(E,F), 0 ≤ q ≤ p ≤ ∞, is said to be Cp,q approximable on a subset U of E if for any ϵ ˃ 0 there exists a g ϵ Cp(E,F) satisfying

sup/xϵU, O≤k≤q ‖ Dk f(x) - Dk g(x) ‖ ≤ ϵ.

It is shown that if E is separable and Cp,q smooth and if f ϵ Cq(E,F) is Cp,q approximable on some neighborhood of every point of E, then F is Cp,q approximable on all of E.

In general it is unknown whether an arbitrary function in C1(l2, R) is C2,1 approximable and an example of a function in C1(l2, R) which may not be C2,1 approximable is given. A weak form of C∞,q, q≥1, to functions in Cq(l2, R) is proved: Let {Uα} be a locally finite cover of l2 and let {Tα} be a corresponding collection of Hilbert-Schmidt operators on l2. Then for any f ϵ Cq(l2,F) such that for all α

sup ‖ Dk(f(x)-g(x))[Tαh]‖ ≤ 1.

xϵUα,‖h‖≤1, 0≤k≤q