9 resultados para FINITE DIFFERENCE
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Um Estudo para a solução numérica do modelo de difusão com retenção, proposta por Bevilacqua et al. (2011), é apresentado, bem como uma formulação implícita para o problema inverso para a estimativa dos parâmetros envolvidos na formulação matemática do modelo. Através de um estudo minucioso da análise de sensibilidade e do cálculo do coeficiente de correlação de Pearson, são identificadas as chances de se obter sucesso na solução do problema inverso através do método determinístico de Levenberg-Marquardt e dos métodos estocásticos Algoritmo de Colisão de Partículas (Particle Collision Algorithm - PCA) e Evolução Diferencial (Differential Evolution - DE). São apresentados os resultados obtidos através destes três métodos de otimização para três casos de conjunto de parâmetros. Foi observada uma forte correlação entre dois destes três parâmetros, o que dificultou a estimativa simultânea dos mesmos. Porém, foi obtido sucesso nas estimativas individuais de cada parâmetro. Foram obtidos bons resultados para os fatores que multiplicam os termos diferenciais da equação que modela o fenômeno de difusão com retenção.
Resumo:
O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.
Resumo:
Este trabalho apresenta uma modelagem matemática para o processo de aquecimento de um corpo exposto a uma fonte pontual de radiação térmica. O resultado original que permite a solução exata de uma equação diferencial parcial não linear a partir de uma seqüência de problemas lineares também é apresentado. Gráficos gerados com resultados obtidos pelo método de diferenças finitas ilustram a solução do problema proposto.
Resumo:
Uma dedução dos critérios de multicriticalidade para o cálculo de pontos críticos de qualquer ordem representa a formalização de ideias utilizadas para calcular pontos críticos e tricríticos e ainda amplia tais ideias. De posse desta dedução pode-se compreender os critérios de tricriticalidade e, com isso, através de uma abordagem via problema de otimização global pode-se fazer o cálculo de pontos tricríticos utilizando um método numérico adequado de otimização global. Para evitar um excesso de custo computacional com rotinas numéricas utilizou-se aproximações na forma de diferenças finitas dos termos que compõem a função objetivo. Para simular a relação P v - T optou-se pela equação de estado cúbica de Peng-Robinson e pela regra clássica de fluidos de van der Vaals, para modelagem do problema também se calculou os tensores de ordem 2, 3, 4 e 5 da função do teste de estabilidade. Os resultados obtidos foram comparados com dados experimentais e por resultados obtidos com outros autores que utilizaram métodos numéricos, equação de estado ou abordagem diferente das utilizadas neste trabalho.
Resumo:
Um grande desafio da atualidade é a preservação dos recursos hídricos, bem como o correto manejo dos mesmos, frente à expansão das cidades e às atividades humanas. A qualidade de um corpo hídrico é usualmente avaliada através da análise de parâmetros biológicos, físicos e químicos. O comportamento de tais parâmetros pode convenientemente ser simulado através de modelos matemáticos e computacionais, que surgem assim como uma ferramenta bastante útil, por sua capacidade de geração de cenários que possam embasar, por exemplo, tomadas de decisão. Nesta tese são discutidas técnicas de estimação da localização e intensidade de uma fonte de contaminante conservativo, hipoteticamente lançado na região predominantemente fluvial de um estuário. O lançamento aqui considerado se dá de forma pontual e contínua e a região enfocada compreendeu o estuário do Rio Macaé, localizado na costa norte do Rio de Janeiro. O trabalho compreende a solução de um problema direto, que consiste no transporte bidimensional (integrado na vertical) desse contaminante hipotético, bem como a aplicação de técnicas de problemas inversos. Para a solução do transporte do contaminante, aqui modelada pela versão 2D horizontal da equação de advecção-difusão, foram utilizados como métodos de discretização o Método de Elementos Finitos e o Método de Diferenças Finitas. Para o problema hidrodinâmico foram utilizados dados de uma solução já desenvolvida para estuário do Rio Macaé. Analisada a malha de acordo com o método de discretização, foram definidas a geometria do estuário e os parâmetros hidrodinâmicos e de transporte. Para a estimação dos parâmetros propostos foi utilizada a técnica de problemas inversos, com o uso dos métodos Luus-Jaakola, Algoritmo de Colisão de Partículas e Otimização por Colônia de Formigas para a estimação da localização e do método Seção Áurea para a estimação do parâmetro de intensidade da fonte. Para a definição de uma fonte, com o objetivo de propor um cenário experimental idealizado e de coleta de dados de amostragem, foi realizada a análise de sensibilidade quanto aos parâmetros a serem estimados. Como os dados de amostragem de concentração foram sintéticos, o problema inverso foi resolvido utilizando-os com e sem ruído, esse introduzido de forma artificial e aleatória. Sem o uso de ruído, os três métodos mostraram-se igualmente eficientes, com uma estimação precisa em 95% das execuções. Já com o uso de dados de amostragem com ruídos de 5%, o método Luus-Jaakola mostrou-se mais eficiente em esforço e custo computacional, embora todos tenham estimado precisamente a fonte em 80% das execuções. Considerando os resultados alcançados neste trabalho tem-se que é possível estimar uma fonte de constituintes, quanto à sua localização e intensidade, através da técnica de problemas inversos. Além disso, os métodos aplicados mostraram-se eficientes na estimação de tais parâmetros, com estimações precisas para a maioria de suas execuções. Sendo assim, o estudo do comportamento de contaminantes, e principalmente da identificação de fontes externas, torna-se uma importante ferramenta para a gestão dos recursos hídricos, possibilitando, inclusive, a identificação de possíveis responsáveis por passivos ambientais.
Resumo:
Neste trabalho o processo não linear de transmissão de calor condução-radiação é abordado num contexto bidimensional plano e simulado com o uso de um esquema linear em diferenças finitas. O problema original é tratado como o limite de uma sequencia de problemas lineares, do tipo condução-convecção. Este limite, cuja existência é comprovada, é facilmente obtido a partir de procedimentos básicos, accessíveis a qualquer estudante de engenharia, permitindo assim o emprego de hipóteses mais realistas, já que não se tem o limitante matemático para a abordagem numérica de uma equação diferencial parcial elíptica. Neste trabalho foi resolvido o problema de condução de calor em regime permanente em uma placa com condições de contorno convectivas e radioativas utilizando-se o software MatLab, vale ressaltar, que a mesma metodologia é aplicável para geometrias mais complexas.
Resumo:
Apresenta-se uma abordagemnumérica para ummodelo que descreve a formação de padrões por sputtering iônico na superfície de ummaterial. Esse processo é responsável pela formação de padrões inesperadamente organizados, como ondulações, nanopontos e filas hexagonais de nanoburacos. Uma análise numérica de padrões preexistentes é proposta para investigar a dinâmica na superfície, baseada em ummodelo resumido em uma equação anisotrópica amortecida de Kuramoto-Sivashinsky, em uma superfície bidimensional com condições de contorno periódicas. Apesar de determinística, seu caráter altamente não-linear fornece uma rica gama de resultados, sendo possível descrever acuradamente diferentes padrões. Umesquema semi implícito de diferenças finitas com fatoração no tempo é aplicado na discretização da equação governante. Simulações foram realizadas com coeficientes realísticos relacionados aos parâmetros físicos (anisotropias, orientação do feixe, difusão). A estabilidade do esquema numérico foi analisada por testes de passo de tempo e espaçamento de malha, enquanto a verificação do mesmo foi realizada pelo Método das Soluções Manufaturadas. Ondulações e padrões hexagonais foram obtidos a partir de condições iniciais monomodais para determinados valores do coeficiente de amortecimento, enquanto caos espaço-temporal apareceu para valores inferiores. Os efeitos anisotrópicos na formação de padrões foramestudados, variando o ângulo de incidência.
Resumo:
Os dados geológicos e geofísicos escolhidos para o tema de estudo pertencem a Bacia do Amazonas, na região centro-norte do Brasil. A Bacia do Amazonas é uma bacia intracratônica com cerca de 500.000 km. A mesma está limitada ao norte pelo Escudo das Guianas e ao sul pelo Escudo Brasileiro. O limite oeste com a Bacia do Solimões é marcado pelo Arco de Purus, ao passo que o Arco de Gurupá constitui seu limite leste. Possui características inerentes a uma bacia intracratônica paleozóica, com uma longa história evolutiva, marcada por discordâncias expressivas e com uma cunha sedimentar relativamente rasa se comparada às bacias cretáceas brasileiras, o que levanta controvérsia a respeito da suficiência do soterramento para a eficiência de geração de hidrocarboneto. Podem ser reconhecidas nos 5000 m do preenchimento sedimentar da Bacia do Amazonas, duas seqüências de primeira ordem: uma paleozóica, intrudida por diques e soleiras de diabásio, na passagem do Triássico para o Jurássico, e uma mesozóica-cenozóica que representam um aspecto importante na evolução térmica da matéria orgânica que ocorre na primeira seqüência. Com relação à exploração de petróleo, apesar do fomento exploratório ocorrido nos últimos anos, a bacia ainda é considerada pouco explorada sendo sua maior reserva a da província de Urucu. Um dos fatores que dificultam bastante a exploração desta bacia assim como a bacia do Solimões a oeste é o acesso restrito, pois estão situadas em áreas remotas e florestadas, de difícil acesso, com muitas reservas indígenas e florestais, o que causa restrições logísticas, operacionais e legais. O efeito térmico das intrusões ígneas é considerado como o responsável pelo acréscimo de calor necessário à maturação da matéria orgânica e conseqüente geração de hidrocarbonetos. Este trabalho contribui com a reconstrução da história térmica desta bacia a partir da modelagem das variáveis termais e da história de soterramento. Para isso, foram utilizados modelos consagrados na literatura, que permitem, de forma simples, a estimativa do fluxo térmico através do embasamento e da seqüência sedimentar. Na análise da influência de intrusões ígneas na estrutura térmica da bacia, o modelo bidimensional desenvolvido pelo método de diferenças finitas se mostrou apropriado. Utilizou-se o fluxo térmico basal calculado nas condições de contorno da modelagem da influência térmica das ígneas. Como resultado obteve-se a estruturação térmica da bacia e a historia maturação de suas rochas geradoras
Resumo:
Desde a década de 1960, devido à pertinência para a indústria petrolífera, a simulação numérica de reservatórios de petróleo tornou-se uma ferramenta usual e uma intensa área de pesquisa. O principal objetivo da modelagem computacional e do uso de métodos numéricos, para a simulação de reservatórios de petróleo, é o de possibilitar um melhor gerenciamento do campo produtor, de maneira que haja uma maximização na recuperação de hidrocarbonetos. Este trabalho tem como objetivo principal paralelizar, empregando a interface de programação de aplicativo OpenMP (Open Multi-Processing), o método numérico utilizado na resolução do sistema algébrico resultante da discretização da equação que descreve o escoamento monofásico em um reservatório de gás, em termos da variável pressão. O conjunto de equações governantes é formado pela equação da continuidade, por uma expressão para o balanço da quantidade de movimento e por uma equação de estado. A Equação da Difusividade Hidráulica (EDH), para a variável pressão, é obtida a partir deste conjunto de equações fundamentais, sendo então discretizada pela utilização do Método de Diferenças Finitas, com a escolha por uma formulação implícita. Diferentes testes numéricos são realizados a fim de estudar a eficiência computacional das versões paralelizadas dos métodos iterativos de Jacobi, Gauss-Seidel, Sobre-relaxação Sucessiva, Gradientes Conjugados (CG), Gradiente Biconjugado (BiCG) e Gradiente Biconjugado Estabilizado (BiCGStab), visando a uma futura aplicação dos mesmos na simulação de reservatórios de gás. Ressalta-se que a presença de heterogeneidades na rocha reservatório e/ou às não-linearidades presentes na EDH para o escoamento de gás aumentam a necessidade de métodos eficientes do ponto de vista de custo computacional, como é o caso de estratégias usando OpenMP.