138 resultados para Equações diferenciais paraciais não-lineares


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho de dissertação apresentaremos uma classe de precondicionadores baseados na aproximação esparsa da inversa da matriz de coecientes, para a resolução de sistemas lineares esparsos de grandes portes através de métodos iterativos, mais especificamente métodos de Krylov. Para que um método de Krylov seja eficiente é extremamente necessário o uso de precondicionadores. No contexto atual, onde computadores de arquitetura híbrida são cada vez mais comuns temos uma demanda cada vez maior por precondicionadores paralelizáveis. Os métodos de inversa aproximada que serão descritos possuem aplicação paralela, pois so dependem de uma operação de produto matriz-vetor, que é altamente paralelizável. Além disso, alguns dos métodos também podem ser construídos em paralelo. A ideia principal é apresentar uma alternativa aos tradicionais precondicionadores que utilizam aproximações dos fatores LU, que apesar de robustos são de difícil paralelização.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde a década de 1960, devido à pertinência para a indústria petrolífera, a simulação numérica de reservatórios de petróleo tornou-se uma ferramenta usual e uma intensa área de pesquisa. O principal objetivo da modelagem computacional e do uso de métodos numéricos, para a simulação de reservatórios de petróleo, é o de possibilitar um melhor gerenciamento do campo produtor, de maneira que haja uma maximização na recuperação de hidrocarbonetos. Este trabalho tem como objetivo principal paralelizar, empregando a interface de programação de aplicativo OpenMP (Open Multi-Processing), o método numérico utilizado na resolução do sistema algébrico resultante da discretização da equação que descreve o escoamento monofásico em um reservatório de gás, em termos da variável pressão. O conjunto de equações governantes é formado pela equação da continuidade, por uma expressão para o balanço da quantidade de movimento e por uma equação de estado. A Equação da Difusividade Hidráulica (EDH), para a variável pressão, é obtida a partir deste conjunto de equações fundamentais, sendo então discretizada pela utilização do Método de Diferenças Finitas, com a escolha por uma formulação implícita. Diferentes testes numéricos são realizados a fim de estudar a eficiência computacional das versões paralelizadas dos métodos iterativos de Jacobi, Gauss-Seidel, Sobre-relaxação Sucessiva, Gradientes Conjugados (CG), Gradiente Biconjugado (BiCG) e Gradiente Biconjugado Estabilizado (BiCGStab), visando a uma futura aplicação dos mesmos na simulação de reservatórios de gás. Ressalta-se que a presença de heterogeneidades na rocha reservatório e/ou às não-linearidades presentes na EDH para o escoamento de gás aumentam a necessidade de métodos eficientes do ponto de vista de custo computacional, como é o caso de estratégias usando OpenMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.