8 resultados para student performance
em Universidad Politécnica de Madrid
Resumo:
In this paper, a computer-based tool is developed to analyze student performance along a given curriculum. The proposed software makes use of historical data to compute passing/failing probabilities and simulates future student academic performance based on stochastic programming methods (MonteCarlo) according to the specific university regulations. This allows to compute the academic performance rates for the specific subjects of the curriculum for each semester, as well as the overall rates (the set of subjects in the semester), which are the efficiency rate and the success rate. Additionally, we compute the rates for the Bachelors degree, which are the graduation rate measured as the percentage of students who finish as scheduled or taking an extra year and the efficiency rate (measured as the percentage of credits of the curriculum with respect to the credits really taken). In Spain, these metrics have been defined by the National Quality Evaluation and Accreditation Agency (ANECA). Moreover, the sensitivity of the performance metrics to some of the parameters of the simulator is analyzed using statistical tools (Design of Experiments). The simulator has been adapted to the curriculum characteristics of the Bachelor in Engineering Technologies at the Technical University of Madrid(UPM).
Estudio de patrones de interacción entre los estudiantes y la Plataforma de Tele-Enseñanza en la UPM
Resumo:
Vivimos en una sociedad en la que la información ha adquirido una vital importancia. El uso de Internet y el desarrollo de nuevos sistemas de la información han generado un ferviente interés tanto de empresas como de instituciones en la búsqueda de nuevos patrones que les proporcione la clave del éxito. La Analítica de Negocio reúne un conjunto de herramientas, estrategias y técnicas orientadas a la explotación de la información con el objetivo de crear conocimiento útil dentro de un marco de trabajo y facilitar la optimización de los recursos tanto de empresas como de instituciones. El presente proyecto se enmarca en lo que se conoce como Gestión Educativa. Se aplicará una arquitectura y modelo de trabajo similar a lo que se ha venido haciendo en los últimos años en el entorno empresarial con la Inteligencia de Negocio. Con esta variante, se pretende mejorar la calidad de la enseñanza, agilizar las decisiones dentro de la institución académica, fortalecer las capacidades del cuerpo docente y en definitiva favorecer el aprendizaje del alumnado. Para lograr el objetivo se ha decidido seguir las etapas del Knowledge Discovery in Databases (KDD), una de las metodologías más conocidas dentro de la Inteligencia de Negocio, que describe el procedimiento que va desde la selección de la información y su carga en sistemas de almacenamiento, hasta la aplicación de técnicas de minería de datos para la obtención nuevo conocimiento. Los estudios se realizan a partir de la información de la activad de los usuarios dentro la plataforma de Tele-Enseñanza de la Universidad Politécnica de Madrid (Moodle). Se desarrollan trabajos de extracción y preprocesado de la base de datos en crudo y se aplican técnicas de minería de datos. En la aplicación de técnicas de minería de datos, uno de los factores más importantes a tener en cuenta es el tipo de información que se va a tratar. Por este motivo, se trabaja con la Minería de Datos Educativa, en inglés, Educational Data Mining (EDM) que consiste en la aplicación de técnicas de minería optimizadas para la información que se genera en entornos educativos. Dentro de las posibilidades que ofrece el EDM, se ha decidido centrar los estudios en lo que se conoce como analítica predictiva. El objetivo fundamental es conocer la influencia que tienen las interacciones alumno-plataforma en las calificaciones finales y descubrir nuevas reglas que describan comportamientos que faciliten al profesorado discriminar si un estudiante va a aprobar o suspender la asignatura, de tal forma que se puedan tomar medidas que mejoren su rendimiento. Toda la información tratada en el presente proyecto ha sido previamente anonimizada para evitar cualquier tipo de intromisión que atente contra la privacidad de los elementos participantes en el estudio. ABSTRACT. We live in a society dominated by data. The use of the Internet accompanied by developments in information systems has generated a sustained interest among companies and institutions to discover new patterns to succeed in their business ventures. Business Analytics (BA) combines tools, strategies and techniques focused on exploiting the available information, to optimize resources and create useful insight. The current project is framed under Educational Management. A Business Intelligence (BI) architecture and business models taught up to date will be applied with the aim to accelerate the decision-making in academic institutions, strengthen teacher´s skills and ultimately improve the quality of teaching and learning. The best way to achieve this is to follow the Knowledge Discovery in Databases (KDD), one of the best-known methodologies in B.I. This process describes data preparation, selection, and cleansing through to the application of purely Data Mining Techniques in order to incorporate prior knowledge on data sets and interpret accurate solutions from the observed results. The studies will be performed using the information extracted from the Universidad Politécnica de Madrid Learning Management System (LMS), Moodle. The stored data is based on the user-platform interaction. The raw data will be extracted and pre-processed and afterwards, Data Mining Techniques will be applied. One of the crucial factors in the application of Data Mining Techniques is the kind of information that will be processed. For this reason, a new Data Mining perspective will be taken, called Educational Data Mining (EDM). EDM consists of the application of Data Mining Techniques but optimized for the raw data generated by the educational environment. Within EDM, we have decided to drive our research on what is called Predictive Analysis. The main purpose is to understand the influence of the user-platform interactions in the final grades of students and discover new patterns that explain their behaviours. This could allow teachers to intervene ahead of a student passing or failing, in such a way an action could be taken to improve the student performance. All the information processed has been previously anonymized to avoid the invasion of privacy.
Resumo:
During the last years, there has been much concern about learning management systems' (LMS) effectiveness when compared to traditional learning and about how to assess students' participation during the course. The tracking and monitoring capabilities of most recent LMS have made it possible to analyse every interaction in the system. The issues addressed on this study are: a) Is LMS student's interaction an indicator of academic performance?; b) Are different results in performance expected between distance and in-class LMS-supported education?; c) How can LMS interactions from logs be categorised?; d) May this categorisation detect 'learning witnesses'? To answer these questions, a set of interaction types from Moodle LMS activity record logs has been analysed during two years in online and in-class Master's degrees at the UPM. The results show partial or no evidence of influence between interaction indicators and academic performance, although the proposed categorisation may help detect learning witnesses.
Resumo:
The purpose of this paper is to present a program written in Matlab-Octave for the simulation of the time evolution of student curricula, i.e, how students pass their subjects along time until graduation. The program computes, from the simulations, the academic performance rates for the subjects of the study plan for each semester as well as the overall rates, which are a) the efficiency rate defined as the ratio of the number of students passing the exam to the number of students who registered for it and b) the success rate, defined as the ratio of the number of students passing the exam to the number of students who not only registered for it but also actually took it. Additionally, we compute the rates for the bachelor academic degree which are established for Spain by the National Quality Evaluation and Accreditation Agency (ANECA) and which are the graduation rate (measured as the percentage of students who finish as scheduled in the plan or taking an extra year) and the efficiency rate (measured as the percentage of credits which a student who graduated has really taken). The simulation is done in terms of the probabilities of passing all the subjects in their study plan. The application of the simulator to Polytech students in Madrid, where requirements for passing are specially stiff in first and second year subjects, is particularly relevant to analyze student cohorts and the probabilities of students finishing in the minimum of four years, or taking and extra year or two extra years, and so forth. It is a very useful tool when designing new study plans. The calculation of the probability distribution of the random variable "number of semesters a student has taken to complete the curricula and graduate" is difficult or even unfeasible to obtain analytically, and this is even truer when we incorporate uncertainty in parameter estimation. This is why we apply Monte Carlo simulation which not only provides illustration of the stochastic process but also a method for computation. The stochastic simulator is proving to be a useful tool for identification of the subjects most critical in the distribution of the number of semesters for curriculum vitae (CV) completion and subsequently for a decision making process in terms of CV planning and passing standards in the University. Simulations are performed through a graphical interface where also the results are presented in appropriate figures. The Project has been funded by the Call for Innovation in Education Projects of Universidad Politécnica de Madrid (UPM) through a Project of its school Escuela Técnica Superior de Ingenieros Industriales ETSII during the period September 2010-September 2011.
Resumo:
Analysis of learning data (learning analytics) is a new research field with high growth potential. The main objective of Learning analytics is the analysis of data (interactions being the basic data unit) generated in virtual learning environments, in order to maximize the outcomes of the learning process; however, a consensus has not been reached yet on which interactions must be measured and what is their influence on learning outcomes. This research is grounded on the study of e-learning interaction typologies and their relationship with students? academic performance, by means of a comparative study between different interaction typologies (based on the agents involved, frequency of use and participation mode). The main conclusions are a) that classifications based on agents offer a better explanation of academic performance; and b) that each of the three typologies are able to explain academic performance in terms of some of their components (student-teacher and student-student interactions, evaluating students interactions and active interactions, respectively), with the other components being nonrelevant.
Resumo:
Learning analytics is the analysis of static and dynamic data extracted from virtual learning environments, in order to understand and optimize the learning process. Generally, this dynamic data is generated by the interactions which take place in the virtual learning environment. At the present time, many implementations for grouping of data have been proposed, but there is no consensus yet on which interactions and groups must be measured and analyzed. There is also no agreement on what is the influence of these interactions, if any, on learning outcomes, academic performance or student success. This study presents three different extant interaction typologies in e-learning and analyzes the relation of their components with students? academic performance. The three different classifications are based on the agents involved in the learning process, the frequency of use and the participation mode, respectively. The main findings from the research are: a) that agent-based classifications offer a better explanation of student academic performance; b) that at least one component in each typology predicts academic performance; and c) that student-teacher and student-student, evaluating students, and active interactions, respectively, have a significant impact on academic performance, while the other interaction types are not significantly related to academic performance.
Resumo:
The purpose of this report is to build a model that represents, as best as possible, the seismic behavior of a pile cap bridge foundation by a nonlinear static (analysis) procedure. It will consist of a reproduction of a specimen already built in the laboratory. This model will carry out a pseudo static lateral and horizontal pushover test that will be applied onto the pile cap until the failure of the structure, the formation of a plastic hinge in the piles due to the horizontal deformation, occurs. The pushover test consists of increasing the horizontal load over the pile cap until the horizontal displacement wanted at the height of the pile cap is reached. The output of this model will be a Skeleton curve that will plot the lateral load (kN) over the displacement (m), so that the maximum movement the pile cap foundation can reach before its failure can be calculated. This failure will be achieved when the load at that specific shift is equal to 85% of the maximum. The pile cap foundation finite element model was based on pile cap built for a laboratory experiment already carried out by the Master student Deming Zhang at Tongji University. Two different pile caps were tested with a difference in height above the ground level. While one has 0:3m, the other rises 0:8m above the ground level. The computer model was calibrated using the experimental results. The pile cap foundation will be programmed in a finite element environment called OpenSees (Open System for Earthquake Engineering Simulation [28]). This environment is a free software developed by Berkeley University specialized, as it name says, in the study of earthquakes and its effects on structures. This specialization is the main reason why it is being used for building this model as it makes it possible to build any finite element model, and perform several analysis in order to get the results wanted. The development of OpenSees is sponsored by the Pacific Earthquake Engineering Research Center through the National Science Foundation engineering and education centers program. OpenSees uses Tcl language to program it, which is a language similar to C++.
Resumo:
This paper presents an online C compiler designed so that students can program their practical assignments in Programming courses. What is really innovative is the self-assessment of the exercises based on black-box tests and train students’ skill to test software. Moreover, this tool lets instructors, not only proposing and classifying practical exercises, but also evaluating automatically the efforts dedicated and the results obtained by the students. The system has been applied to the 1st-year students at the Industrial Engineering specialization at the Universidad Politecnica de Madrid. Results show that the students obtained better academic performance, reducing the failure rate in the practical exam considerably with respect to previous years, in addition that an anonymous survey proved that students are satisfied with the system because they get instant feedback about their programs.