Estudio de patrones de interacción entre los estudiantes y la Plataforma de Tele-Enseñanza en la UPM
Contribuinte(s) |
García Hernando, Ana Belén |
---|---|
Data(s) |
15/07/2015
|
Resumo |
Vivimos en una sociedad en la que la información ha adquirido una vital importancia. El uso de Internet y el desarrollo de nuevos sistemas de la información han generado un ferviente interés tanto de empresas como de instituciones en la búsqueda de nuevos patrones que les proporcione la clave del éxito. La Analítica de Negocio reúne un conjunto de herramientas, estrategias y técnicas orientadas a la explotación de la información con el objetivo de crear conocimiento útil dentro de un marco de trabajo y facilitar la optimización de los recursos tanto de empresas como de instituciones. El presente proyecto se enmarca en lo que se conoce como Gestión Educativa. Se aplicará una arquitectura y modelo de trabajo similar a lo que se ha venido haciendo en los últimos años en el entorno empresarial con la Inteligencia de Negocio. Con esta variante, se pretende mejorar la calidad de la enseñanza, agilizar las decisiones dentro de la institución académica, fortalecer las capacidades del cuerpo docente y en definitiva favorecer el aprendizaje del alumnado. Para lograr el objetivo se ha decidido seguir las etapas del Knowledge Discovery in Databases (KDD), una de las metodologías más conocidas dentro de la Inteligencia de Negocio, que describe el procedimiento que va desde la selección de la información y su carga en sistemas de almacenamiento, hasta la aplicación de técnicas de minería de datos para la obtención nuevo conocimiento. Los estudios se realizan a partir de la información de la activad de los usuarios dentro la plataforma de Tele-Enseñanza de la Universidad Politécnica de Madrid (Moodle). Se desarrollan trabajos de extracción y preprocesado de la base de datos en crudo y se aplican técnicas de minería de datos. En la aplicación de técnicas de minería de datos, uno de los factores más importantes a tener en cuenta es el tipo de información que se va a tratar. Por este motivo, se trabaja con la Minería de Datos Educativa, en inglés, Educational Data Mining (EDM) que consiste en la aplicación de técnicas de minería optimizadas para la información que se genera en entornos educativos. Dentro de las posibilidades que ofrece el EDM, se ha decidido centrar los estudios en lo que se conoce como analítica predictiva. El objetivo fundamental es conocer la influencia que tienen las interacciones alumno-plataforma en las calificaciones finales y descubrir nuevas reglas que describan comportamientos que faciliten al profesorado discriminar si un estudiante va a aprobar o suspender la asignatura, de tal forma que se puedan tomar medidas que mejoren su rendimiento. Toda la información tratada en el presente proyecto ha sido previamente anonimizada para evitar cualquier tipo de intromisión que atente contra la privacidad de los elementos participantes en el estudio. ABSTRACT. We live in a society dominated by data. The use of the Internet accompanied by developments in information systems has generated a sustained interest among companies and institutions to discover new patterns to succeed in their business ventures. Business Analytics (BA) combines tools, strategies and techniques focused on exploiting the available information, to optimize resources and create useful insight. The current project is framed under Educational Management. A Business Intelligence (BI) architecture and business models taught up to date will be applied with the aim to accelerate the decision-making in academic institutions, strengthen teacher´s skills and ultimately improve the quality of teaching and learning. The best way to achieve this is to follow the Knowledge Discovery in Databases (KDD), one of the best-known methodologies in B.I. This process describes data preparation, selection, and cleansing through to the application of purely Data Mining Techniques in order to incorporate prior knowledge on data sets and interpret accurate solutions from the observed results. The studies will be performed using the information extracted from the Universidad Politécnica de Madrid Learning Management System (LMS), Moodle. The stored data is based on the user-platform interaction. The raw data will be extracted and pre-processed and afterwards, Data Mining Techniques will be applied. One of the crucial factors in the application of Data Mining Techniques is the kind of information that will be processed. For this reason, a new Data Mining perspective will be taken, called Educational Data Mining (EDM). EDM consists of the application of Data Mining Techniques but optimized for the raw data generated by the educational environment. Within EDM, we have decided to drive our research on what is called Predictive Analysis. The main purpose is to understand the influence of the user-platform interactions in the final grades of students and discover new patterns that explain their behaviours. This could allow teachers to intervene ahead of a student passing or failing, in such a way an action could be taken to improve the student performance. All the information processed has been previously anonymized to avoid the invasion of privacy. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
spa |
Publicador |
E.T.S.I y Sistemas de Telecomunicación (UPM) |
Relação |
http://oa.upm.es/39012/1/TFG_CARLOS_MOYA_PEREZ.pdf |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Palavras-Chave | #Educación #Informática |
Tipo |
info:eu-repo/semantics/bachelorThesis Proyecto Fin de Carrera/Grado PeerReviewed |