14 resultados para integrated circuit
em Universidad Politécnica de Madrid
Resumo:
SRAM-based FPGAs are sensitive to radiation effects. Soft errors can appear and accumulate, potentially defeating mitigation strategies deployed at the Application Layer. Therefore, Configuration Memory scrubbing is required to improve radiation tolerance of such FPGAs in space applications. Virtex FPGAs allow runtime scrubbing by means of dynamic partial reconfiguration. Even with scrubbing, intra-FPGA TMR systems are subjected to common-mode errors affecting more than one design domain. This is solved in inter-FPGA TMR systems at the expense of a higher cost, power and mass. In this context, a self-reference scrubber for device-level TMR system based on Xilinx Virtex FPGAs is presented. This scrubber allows for a fast SEU/MBU detection and correction by peer frame comparison without needing to access a golden configuration memory
Resumo:
Coupled device and process silumation tools, collectively known as technology computer-aided design (TCAD), have been used in the integrated circuit industry for over 30 years. These tools allow researchers to quickly converge on optimized devide designs and manufacturing processes with minimal experimental expenditures. The PV industry has been slower to adopt these tools, but is quickly developing competency in using them. This paper introduces a predictive defect engineering paradigm and simulation tool, while demonstrating its effectiveness at increasing the performance and throughput of current industrial processes. the impurity-to-efficiency (I2E) simulator is a coupled process and device simulation tool that links wafer material purity, processing parameters and cell desigh to device performance. The tool has been validated with experimental data and used successfully with partners in industry. The simulator has also been deployed in a free web-accessible applet, which is available for use by the industrial and academic communities.
Resumo:
El mercado de los semiconductores está saturado de productos similares y de distribuidores con una propuesta de servicios similar. Los procesos de Co-Creación en los que el cliente colabora en la definición y desarrollo del producto y proporciona información sobre su utilidad, prestaciones y valor percibido, con el resultado de un producto que soluciona sus necesidades reales, se están convirtiendo en un paso adelante en la diferenciación y expansión de la cadena de valor. El proceso de diseño y fabricación de semiconductores es bastante complejo, requiere inversiones cada vez mayores y demanda soluciones completas. Se requiere un ecosistema que soporte el desarrollo de los equipos electrónicos basados en dichos semiconductores. La facilidad para el diálogo y compartir información que proporciona internet, las herramientas basadas en web 2.0 y los servicios y aplicaciones en la nube; favorecen la generación de ideas, el desarrollo y evaluación de productos y posibilita la interacción entre diversos co-creadores. Para iniciar un proceso de co-creación se requiere métodos y herramientas adecuados para interactuar con los participantes e intercambiar experiencias, procesos para integrar la co-creación dentro de la operativa de la empresa, y desarrollar una organización y cultura que soporten y fomenten dicho proceso. Entre los métodos más efectivos están la Netnografía que estudia las conversaciones de las comunidades en internet; colaboración con usuarios pioneros que van por delante del Mercado y esperan un gran beneficio de la satisfacción de sus necesidades o deseos; los estudios de innovación que permiten al usuario definir y a menudo crear su propia solución y la externalización a la multitud, que mediante una convocatoria abierta plantea a la comunidad retos a resolver a cambio de algún tipo de recompensa. La especialización de empresas subcontratistas en el desarrollo y fabricación de semiconductores; facilita la innovación abierta colaborando con diversas entidades en las diversas fases del desarrollo del semiconductor y su ecosistema. La co-creación se emplea actualmente en el sector de los semiconductores para detectar ideas de diseños y aplicaciones, a menudo mediante concursos de innovación. El servicio de soporte técnico y la evaluación de los semiconductores con frecuencia es fruto de la colaboración entre los miembros de la comunidad fomentada y soportada por los fabricantes del producto. Con el programa EBVchips se posibilita el acceso a empresas pequeñas y medianas a la co-creación de semiconductores con los fabricantes en un proceso coordinado y patrocinado por el distribuidor EBV. Los semiconductores configurables como las FPGAs constituyen otro ejemplo de co-creación mediante el cual el fabricante proporciona el circuito integrado y el entorno de desarrollo y los clientes crean el producto final definiendo sus características y funcionalidades. Este proceso se enriquece con bloques funcionales de diseño, IP-cores, que a menudo son creados por la comunidad de usuarios. ABSTRACT. The semiconductor market is saturated of similar products and distributors with a similar proposal for services. The processes of co-creation in which the customer collaborates in the definition and development of the product and provides information about its utility, performance and perceived value, resulting in a product that solves their real needs, are becoming a step forward in the differentiation and expansion of the value chain. The design and semiconductor manufacturing process is quite complex, requires increasingly higher investments and demands complete solutions. It requires an ecosystem that supports the development of electronic equipments based on such semiconductors. The ease of dialogue and sharing information that provides internet, web 2.0-based tools and services and applications in the cloud; favor the generation of ideas, the development and evaluation of products and allows the interaction between various co-creators. To start a process of co-creation adequate methods and tools are required to interact with the participants and exchange experiences, processes to integrate the co-creation within the operations of the company, and developing an organization and culture that support and promote such process. Among the most effective methods are the Netnography that studies the conversations of the communities on the internet; collaboration with Lead Users who are ahead of the market and expect a great benefit from the satisfaction of their needs or desires; Innovation studies that allow the user to define and often create their own solution and Crowdsourcing, an open call to the community to solve challenges in exchange for some kind of reward. The specialization of subcontractors in the development and manufacture of semiconductors; facilitates open innovation in the context of collaboration with different entities working in the different phases of the development of the semiconductor and its ecosystem. Co-creation is used currently in the semiconductor sector to detect ideas of designs and applications, often through innovation’s contests. Technical support and evaluation of semiconductors frequently is the result of collaboration between members of the community fostered and supported by the manufacturers of the product. The EBVchips program provides access to small and medium-sized companies to the co-creation of semiconductors with manufacturers in a process coordinated and sponsored by the Distributor EBV. Configurable semiconductors like FPGAs are another example of co-creation whereby the manufacturer provides the integrated circuit and the development environment and customers create the final product by defining their features and functionality. This process is enriched with IP-cores, designs blocks that are often created by the user community.
Resumo:
El siguiente proyecto es un desarrollo histórico-científico acerca de la notoria importancia que supuso la aparición del microchip o circuito integrado1. El desarrollo de este trabajo ha sido una investigación bibliográfica en contenidos webs, enciclopedias y libros. El trabajo contiene un estudio sobre los transistores que fue el componente que dio paso al circuito integrado además de ser uno de los mayores inventos del siglo XX, además, se propone una pequeña inmersión a la época histórica del momento de la aparición del transistor. Al igual que con el transistor, se hace un estudio acerca del circuito integrado, pero en este caso siendo más extenso ya que es el objeto de estudio de este PFC. Para este componente sí que podemos encontrar una explicación más exhaustiva acerca de su fabricación, materiales. Además también podemos encontrar el momento históricosocial de la época bajo estudio. Para finalizar con el proyecto, se hace un breve repaso de los ejemplos de aplicación del circuito integrado y así poder hacer hincapié de la revolución tecnológica que supuso el descubrimiento del microchip. ABSTRACT. The following work is a historical and scientific development regarding the fundamental importance the emergence of the microchip. The development of this work has consisted of a bibliographic research of web contents, encyclopedias and books. The paper contains a study about the transistors, component that propitiated the integrated circuit and was one of the most important inventions of the XXth century. Also is proposed a short historical immersion in the time that preceded the coming of the transistor. As well as with the transistor, a study of the integrated circuit is carried out, yet with deeper insight, for that is the central aim of this Final Project report. For this component a more exhaustive explanation of its manufacture process, materials and theories can be provided. Also, the historical and social of that time is described. To complete the report, a brief review is done about examples of applications of the integrated circuit and thus highlight the technological revolution that the microchip development brought.
Resumo:
Este trabajo trata de la aplicación de los códigos detectores y correctores de error al diseño de los Computadores Tolerantes a Fallos, planteando varias estrategias óptimas de detección y corrección para algunos subsistemas. En primer lugar,"se justifica la necesidad de aplicar técnicas de Tolerancia a Fallos. A continuación se hacen previsiones de evolución de la tecnología de Integración, así como una tipificación de los fallos en circuitos Integrados. Partiendo de una recopilación y revisión de la teoría de códigos, se hace un desarrollo teórico cuya aplicación permite obligar a que algunos de estos códigos sean cerrados respecto de las operaciones elementales que se ejecutan en un computador. Se plantean estrategias óptimas de detección y corrección de error para sus subsistemas mas Importantes, culminando en el diseño, realización y prueba de una unidad de memoria y una unidad de proceso de datos con amplias posibilidades de detección y corrección de errores.---ABSTRACT---The present work deals with the application of error detecting and correctíng codes to the désign of Fault Tolerant Computers. Several óptimo» detection and correction strategies are presented to be applied in some subsystems. First of all, the necessity of applying Fault Tolerant techniques is explained. Later, a study on íntegration technology evolution and typification of Integrated circuit faults 1s developed. Based on a compilation and revisión of Coding Theory, a theoretical study is carried out. It allows us to force some of these codes to be closed over elementary operations. Optimum detection and correction techniques are presented for the raost important subsystems. Flnally, the design, building and testing of a memory unit and a processing unit provided with wlde error detection and correction posibilities 1s shown.
Resumo:
Nowadays integrated circuit reliability is challenged by both variability and working conditions. Environmental radiation has become a major issue when ensuring the circuit correct behavior. The required radiation and later analysis performed to the circuit boards is both fund and time expensive. The lack of tools which support pre-manufacturing radiation hardness analysis hinders circuit designers tasks. This paper describes an extensively customizable simulation tool for the characterization of radiation effects on electronic systems. The proposed tool can produce an in depth analysis of a complete circuit in almost any kind of radiation environment in affordable computation times.
Design and Simulation of Deep Nanometer SRAM Cells under Energy, Mismatch, and Radiation Constraints
Resumo:
La fiabilidad está pasando a ser el principal problema de los circuitos integrados según la tecnología desciende por debajo de los 22nm. Pequeñas imperfecciones en la fabricación de los dispositivos dan lugar ahora a importantes diferencias aleatorias en sus características eléctricas, que han de ser tenidas en cuenta durante la fase de diseño. Los nuevos procesos y materiales requeridos para la fabricación de dispositivos de dimensiones tan reducidas están dando lugar a diferentes efectos que resultan finalmente en un incremento del consumo estático, o una mayor vulnerabilidad frente a radiación. Las memorias SRAM son ya la parte más vulnerable de un sistema electrónico, no solo por representar más de la mitad del área de los SoCs y microprocesadores actuales, sino también porque las variaciones de proceso les afectan de forma crítica, donde el fallo de una única célula afecta a la memoria entera. Esta tesis aborda los diferentes retos que presenta el diseño de memorias SRAM en las tecnologías más pequeñas. En un escenario de aumento de la variabilidad, se consideran problemas como el consumo de energía, el diseño teniendo en cuenta efectos de la tecnología a bajo nivel o el endurecimiento frente a radiación. En primer lugar, dado el aumento de la variabilidad de los dispositivos pertenecientes a los nodos tecnológicos más pequeños, así como a la aparición de nuevas fuentes de variabilidad por la inclusión de nuevos dispositivos y la reducción de sus dimensiones, la precisión del modelado de dicha variabilidad es crucial. Se propone en la tesis extender el método de inyectores, que modela la variabilidad a nivel de circuito, abstrayendo sus causas físicas, añadiendo dos nuevas fuentes para modelar la pendiente sub-umbral y el DIBL, de creciente importancia en la tecnología FinFET. Los dos nuevos inyectores propuestos incrementan la exactitud de figuras de mérito a diferentes niveles de abstracción del diseño electrónico: a nivel de transistor, de puerta y de circuito. El error cuadrático medio al simular métricas de estabilidad y prestaciones de células SRAM se reduce un mínimo de 1,5 veces y hasta un máximo de 7,5 a la vez que la estimación de la probabilidad de fallo se mejora en varios ordenes de magnitud. El diseño para bajo consumo es una de las principales aplicaciones actuales dada la creciente importancia de los dispositivos móviles dependientes de baterías. Es igualmente necesario debido a las importantes densidades de potencia en los sistemas actuales, con el fin de reducir su disipación térmica y sus consecuencias en cuanto al envejecimiento. El método tradicional de reducir la tensión de alimentación para reducir el consumo es problemático en el caso de las memorias SRAM dado el creciente impacto de la variabilidad a bajas tensiones. Se propone el diseño de una célula que usa valores negativos en la bit-line para reducir los fallos de escritura según se reduce la tensión de alimentación principal. A pesar de usar una segunda fuente de alimentación para la tensión negativa en la bit-line, el diseño propuesto consigue reducir el consumo hasta en un 20 % comparado con una célula convencional. Una nueva métrica, el hold trip point se ha propuesto para prevenir nuevos tipos de fallo debidos al uso de tensiones negativas, así como un método alternativo para estimar la velocidad de lectura, reduciendo el número de simulaciones necesarias. Según continúa la reducción del tamaño de los dispositivos electrónicos, se incluyen nuevos mecanismos que permiten facilitar el proceso de fabricación, o alcanzar las prestaciones requeridas para cada nueva generación tecnológica. Se puede citar como ejemplo el estrés compresivo o extensivo aplicado a los fins en tecnologías FinFET, que altera la movilidad de los transistores fabricados a partir de dichos fins. Los efectos de estos mecanismos dependen mucho del layout, la posición de unos transistores afecta a los transistores colindantes y pudiendo ser el efecto diferente en diferentes tipos de transistores. Se propone el uso de una célula SRAM complementaria que utiliza dispositivos pMOS en los transistores de paso, así reduciendo la longitud de los fins de los transistores nMOS y alargando los de los pMOS, extendiéndolos a las células vecinas y hasta los límites de la matriz de células. Considerando los efectos del STI y estresores de SiGe, el diseño propuesto mejora los dos tipos de transistores, mejorando las prestaciones de la célula SRAM complementaria en más de un 10% para una misma probabilidad de fallo y un mismo consumo estático, sin que se requiera aumentar el área. Finalmente, la radiación ha sido un problema recurrente en la electrónica para aplicaciones espaciales, pero la reducción de las corrientes y tensiones de los dispositivos actuales los está volviendo vulnerables al ruido generado por radiación, incluso a nivel de suelo. Pese a que tecnologías como SOI o FinFET reducen la cantidad de energía colectada por el circuito durante el impacto de una partícula, las importantes variaciones de proceso en los nodos más pequeños va a afectar su inmunidad frente a la radiación. Se demuestra que los errores inducidos por radiación pueden aumentar hasta en un 40 % en el nodo de 7nm cuando se consideran las variaciones de proceso, comparado con el caso nominal. Este incremento es de una magnitud mayor que la mejora obtenida mediante el diseño de células de memoria específicamente endurecidas frente a radiación, sugiriendo que la reducción de la variabilidad representaría una mayor mejora. ABSTRACT Reliability is becoming the main concern on integrated circuit as the technology goes beyond 22nm. Small imperfections in the device manufacturing result now in important random differences of the devices at electrical level which must be dealt with during the design. New processes and materials, required to allow the fabrication of the extremely short devices, are making new effects appear resulting ultimately on increased static power consumption, or higher vulnerability to radiation SRAMs have become the most vulnerable part of electronic systems, not only they account for more than half of the chip area of nowadays SoCs and microprocessors, but they are critical as soon as different variation sources are regarded, with failures in a single cell making the whole memory fail. This thesis addresses the different challenges that SRAM design has in the smallest technologies. In a common scenario of increasing variability, issues like energy consumption, design aware of the technology and radiation hardening are considered. First, given the increasing magnitude of device variability in the smallest nodes, as well as new sources of variability appearing as a consequence of new devices and shortened lengths, an accurate modeling of the variability is crucial. We propose to extend the injectors method that models variability at circuit level, abstracting its physical sources, to better model sub-threshold slope and drain induced barrier lowering that are gaining importance in FinFET technology. The two new proposed injectors bring an increased accuracy of figures of merit at different abstraction levels of electronic design, at transistor, gate and circuit levels. The mean square error estimating performance and stability metrics of SRAM cells is reduced by at least 1.5 and up to 7.5 while the yield estimation is improved by orders of magnitude. Low power design is a major constraint given the high-growing market of mobile devices that run on battery. It is also relevant because of the increased power densities of nowadays systems, in order to reduce the thermal dissipation and its impact on aging. The traditional approach of reducing the voltage to lower the energy consumption if challenging in the case of SRAMs given the increased impact of process variations at low voltage supplies. We propose a cell design that makes use of negative bit-line write-assist to overcome write failures as the main supply voltage is lowered. Despite using a second power source for the negative bit-line, the design achieves an energy reduction up to 20% compared to a conventional cell. A new metric, the hold trip point has been introduced to deal with new sources of failures to cells using a negative bit-line voltage, as well as an alternative method to estimate cell speed, requiring less simulations. With the continuous reduction of device sizes, new mechanisms need to be included to ease the fabrication process and to meet the performance targets of the successive nodes. As example we can consider the compressive or tensile strains included in FinFET technology, that alter the mobility of the transistors made out of the concerned fins. The effects of these mechanisms are very dependent on the layout, with transistor being affected by their neighbors, and different types of transistors being affected in a different way. We propose to use complementary SRAM cells with pMOS pass-gates in order to reduce the fin length of nMOS devices and achieve long uncut fins for the pMOS devices when the cell is included in its corresponding array. Once Shallow Trench isolation and SiGe stressors are considered the proposed design improves both kinds of transistor, boosting the performance of complementary SRAM cells by more than 10% for a same failure probability and static power consumption, with no area overhead. While radiation has been a traditional concern in space electronics, the small currents and voltages used in the latest nodes are making them more vulnerable to radiation-induced transient noise, even at ground level. Even if SOI or FinFET technologies reduce the amount of energy transferred from the striking particle to the circuit, the important process variation that the smallest nodes will present will affect their radiation hardening capabilities. We demonstrate that process variations can increase the radiation-induced error rate by up to 40% in the 7nm node compared to the nominal case. This increase is higher than the improvement achieved by radiation-hardened cells suggesting that the reduction of process variations would bring a higher improvement.
A methodology to analyze, design and implement very fast and robust controls of Buck-type converters
Resumo:
La electrónica digital moderna presenta un desafío a los diseñadores de sistemas de potencia. El creciente alto rendimiento de microprocesadores, FPGAs y ASICs necesitan sistemas de alimentación que cumplan con requirimientos dinámicos y estáticos muy estrictos. Específicamente, estas alimentaciones son convertidores DC-DC de baja tensión y alta corriente que necesitan ser diseñados para tener un pequeño rizado de tensión y una pequeña desviación de tensión de salida bajo transitorios de carga de una alta pendiente. Además, dependiendo de la aplicación, se necesita cumplir con otros requerimientos tal y como proveer a la carga con ”Escalado dinámico de tensión”, donde el convertidor necesitar cambiar su tensión de salida tan rápidamente posible sin sobreoscilaciones, o ”Posicionado Adaptativo de la Tensión” donde la tensión de salida se reduce ligeramente cuanto más grande sea la potencia de salida. Por supuesto, desde el punto de vista de la industria, las figuras de mérito de estos convertidores son el coste, la eficiencia y el tamaño/peso. Idealmente, la industria necesita un convertidor que es más barato, más eficiente, más pequeño y que aún así cumpla con los requerimienos dinámicos de la aplicación. En este contexto, varios enfoques para mejorar la figuras de mérito de estos convertidores se han seguido por la industria y la academia tales como mejorar la topología del convertidor, mejorar la tecnología de semiconducores y mejorar el control. En efecto, el control es una parte fundamental en estas aplicaciones ya que un control muy rápido hace que sea más fácil que una determinada topología cumpla con los estrictos requerimientos dinámicos y, consecuentemente, le da al diseñador un margen de libertar más amplio para mejorar el coste, la eficiencia y/o el tamaño del sistema de potencia. En esta tesis, se investiga cómo diseñar e implementar controles muy rápidos para el convertidor tipo Buck. En esta tesis se demuestra que medir la tensión de salida es todo lo que se necesita para lograr una respuesta casi óptima y se propone una guía de diseño unificada para controles que sólo miden la tensión de salida Luego, para asegurar robustez en controles muy rápidos, se proponen un modelado y un análisis de estabilidad muy precisos de convertidores DC-DC que tienen en cuenta circuitería para sensado y elementos parásitos críticos. También, usando este modelado, se propone una algoritmo de optimización que tiene en cuenta las tolerancias de los componentes y sensados distorsionados. Us ando este algoritmo, se comparan controles muy rápidos del estado del arte y su capacidad para lograr una rápida respuesta dinámica se posiciona según el condensador de salida utilizado. Además, se propone una técnica para mejorar la respuesta dinámica de los controladores. Todas las propuestas se han corroborado por extensas simulaciones y prototipos experimentales. Con todo, esta tesis sirve como una metodología para ingenieros para diseñar e implementar controles rápidos y robustos de convertidores tipo Buck. ABSTRACT Modern digital electronics present a challenge to designers of power systems. The increasingly high-performance of microprocessors, FPGAs (Field Programmable Gate Array) and ASICs (Application-Specific Integrated Circuit) require power supplies to comply with very demanding static and dynamic requirements. Specifically, these power supplies are low-voltage/high-current DC-DC converters that need to be designed to exhibit low voltage ripple and low voltage deviation under high slew-rate load transients. Additionally, depending on the application, other requirements need to be met such as to provide to the load ”Dynamic Voltage Scaling” (DVS), where the converter needs to change the output voltage as fast as possible without underdamping, or ”Adaptive Voltage Positioning” (AVP) where the output voltage is slightly reduced the greater the output power. Of course, from the point of view of the industry, the figures of merit of these converters are the cost, efficiency and size/weight. Ideally, the industry needs a converter that is cheaper, more efficient, smaller and that can still meet the dynamic requirements of the application. In this context, several approaches to improve the figures of merit of these power supplies are followed in the industry and academia such as improving the topology of the converter, improving the semiconductor technology and improving the control. Indeed, the control is a fundamental part in these applications as a very fast control makes it easier for the topology to comply with the strict dynamic requirements and, consequently, gives the designer a larger margin of freedom to improve the cost, efficiency and/or size of the power supply. In this thesis, how to design and implement very fast controls for the Buck converter is investigated. This thesis proves that sensing the output voltage is all that is needed to achieve an almost time-optimal response and a unified design guideline for controls that only sense the output voltage is proposed. Then, in order to assure robustness in very fast controls, a very accurate modeling and stability analysis of DC-DC converters is proposed that takes into account sensing networks and critical parasitic elements. Also, using this modeling approach, an optimization algorithm that takes into account tolerances of components and distorted measurements is proposed. With the use of the algorithm, very fast analog controls of the state-of-the-art are compared and their capabilities to achieve a fast dynamic response are positioned de pending on the output capacitor. Additionally, a technique to improve the dynamic response of controllers is also proposed. All the proposals are corroborated by extensive simulations and experimental prototypes. Overall, this thesis serves as a methodology for engineers to design and implement fast and robust controls for Buck-type converters.
Resumo:
Anisotropic magnetoresistive (AMR) magnetic sensors are often chosen as the magnetic transducer for magnetic field sensing in applications with low to moderate magnetic field resolution because of the relative low mass of the sensor and their ease of use. They measure magnetic fields in the order of the Earth magnetic field (with typical sensitivities of 1‰/G or 10−2‰/μT), have typical minimum detectable fields in order of nT and even 0.1 nT but they are seriously limited by the thermal drifts due to the variation of the resistivity with temperature (∼2.5‰/°C) and the variation of the magnetoresistive effect with temperature (which affects both the sensitivity of the sensors: ∼2.7‰/°C, and the offset: ±0.5‰/°C). Therefore, for lower magnetic fields, fluxgate vector sensors are generally preferred. In the present work these limitations of AMR sensors are outlined and studied. Three methods based on lock-in amplifiers are proposed as low noise techniques. Their performance has been simulated, experimentally tested and comparatively discussed. The developed model has been also used to derive a technique for temperature compensation of AMR response. The final goal to implement these techniques in a space qualified applied specific integrated circuit (ASIC) for Mars in situ exploration with compact miniaturized magnetometers.
Resumo:
Esta tesis recoje un trabajo experimental centrado en profundizar sobre el conocimiento de los bloques detectores monolíticos como alternativa a los detectores segmentados para tomografía por emisión de positrones (Positron Emission Tomography, PET). El trabajo llevado a cabo incluye el desarrollo, la caracterización, la puesta a punto y la evaluación de prototipos demostradores PET utilizando bloques monolíticos de ortosilicato de lutecio ytrio dopado con cerio (Cerium-Doped Lutetium Yttrium Orthosilicate, LYSO:Ce) usando sensores compatibles con altos campos magnéticos, tanto fotodiodos de avalancha (Avalanche Photodiodes, APDs) como fotomultiplicadores de silicio (Silicon Photomultipliers, SiPMs). Los prototipos implementados con APDs se construyeron para estudiar la viabilidad de un prototipo PET de alta sensibilidad previamente simulado, denominado BrainPET. En esta memoria se describe y caracteriza la electrónica frontal integrada utilizada en estos prototipos junto con la electrónica de lectura desarrollada específicamente para los mismos. Se muestran los montajes experimentales para la obtención de las imágenes tomográficas PET y para el entrenamiento de los algoritmos de red neuronal utilizados para la estimación de las posiciones de incidencia de los fotones γ sobre la superficie de los bloques monolíticos. Con el prototipo BrainPET se obtuvieron resultados satisfactorios de resolución energética (13 % FWHM), precisión espacial de los bloques monolíticos (~ 2 mm FWHM) y resolución espacial de la imagen PET de 1,5 - 1,7 mm FWHM. Además se demostró una capacidad resolutiva en la imagen PET de ~ 2 mm al adquirir simultáneamente imágenes de fuentes radiactivas separadas a distancias conocidas. Sin embargo, con este prototipo se detectaron también dos limitaciones importantes. En primer lugar, se constató una falta de flexibilidad a la hora de trabajar con un circuito integrado de aplicación específica (Application Specific Integrated Circuit, ASIC) cuyo diseño electrónico no era propio sino comercial, unido al elevado coste que requieren las modificaciones del diseño de un ASIC con tales características. Por otra parte, la caracterización final de la electrónica integrada del BrainPET mostró una resolución temporal con amplio margen de mejora (~ 13 ns FWHM). Tomando en cuenta estas limitaciones obtenidas con los prototipos BrainPET, junto con la evolución tecnológica hacia matrices de SiPM, el conocimiento adquirido con los bloques monolíticos se trasladó a la nueva tecnología de sensores disponible, los SiPMs. A su vez se inició una nueva estrategia para la electrónica frontal, con el ASIC FlexToT, un ASIC de diseño propio basado en un esquema de medida del tiempo sobre umbral (Time over Threshold, ToT), en donde la duración del pulso de salida es proporcional a la energía depositada. Una de las características más interesantes de este esquema es la posibilidad de manejar directamente señales de pulsos digitales, en lugar de procesar la amplitud de las señales analógicas. Con esta arquitectura electrónica se sustituyen los conversores analógicos digitales (Analog to Digital Converter, ADCs) por conversores de tiempo digitales (Time to Digital Converter, TDCs), pudiendo implementar éstos de forma sencilla en matrices de puertas programmable ‘in situ’ (Field Programmable Gate Array, FPGA), reduciendo con ello el consumo y la complejidad del diseño. Se construyó un nuevo prototipo demostrador FlexToT para validar dicho ASIC para bloques monolíticos o segmentados. Se ha llevado a cabo el diseño y caracterización de la electrónica frontal necesaria para la lectura del ASIC FlexToT, evaluando su linealidad y rango dinámico, el comportamiento frente a ruido así como la no linealidad diferencial obtenida con los TDCs implementados en la FPGA. Además, la electrónica presentada en este trabajo es capaz de trabajar con altas tasas de actividad y de discriminar diferentes centelleadores para aplicaciones phoswich. El ASIC FlexToT proporciona una excelente resolución temporal en coincidencia para los eventos correspondientes con el fotopico de 511 keV (128 ps FWHM), solventando las limitaciones de resolución temporal del prototipo BrainPET. Por otra parte, la resolución energética con bloques monolíticos leidos por ASICs FlexToT proporciona una resolución energética de 15,4 % FWHM a 511 keV. Finalmente, se obtuvieron buenos resultados en la calidad de la imagen PET y en la capacidad resolutiva del demostrador FlexToT, proporcionando resoluciones espaciales en el centro del FoV en torno a 1,4 mm FWHM. ABSTRACT This thesis is focused on the development of experimental activities used to deepen the knowledge of monolithic detector blocks as an alternative to segmented detectors for Positron Emission Tomography (PET). It includes the development, characterization, setting up, running and evaluation of PET demonstrator prototypes with monolithic detector blocks of Cerium-doped Lutetium Yttrium Orthosilicate (LYSO:Ce) using magnetically compatible sensors such as Avalanche Photodiodes (APDs) and Silicon Photomultipliers (SiPMs). The prototypes implemented with APDs were constructed to validate the viability of a high-sensitivity PET prototype that had previously been simulated, denominated BrainPET. This work describes and characterizes the integrated front-end electronics used in these prototypes, as well as the electronic readout system developed especially for them. It shows the experimental set-ups to obtain the tomographic PET images and to train neural networks algorithms used for position estimation of photons impinging on the surface of monolithic blocks. Using the BrainPET prototype, satisfactory energy resolution (13 % FWHM), spatial precision of monolithic blocks (~ 2 mm FWHM) and spatial resolution of the PET image (1.5 – 1.7 mm FWHM) in the center of the Field of View (FoV) were obtained. Moreover, we proved the imaging capabilities of this demonstrator with extended sources, considering the acquisition of two simultaneous sources of 1 mm diameter placed at known distances. However, some important limitations were also detected with the BrainPET prototype. In the first place, it was confirmed that there was a lack of flexibility working with an Application Specific Integrated Circuit (ASIC) whose electronic design was not own but commercial, along with the high cost required to modify an ASIC design with such features. Furthermore, the final characterization of the BrainPET ASIC showed a timing resolution with room for improvement (~ 13 ns FWHM). Taking into consideration the limitations obtained with the BrainPET prototype, along with the technological evolution in magnetically compatible devices, the knowledge acquired with the monolithic blocks were transferred to the new technology available, the SiPMs. Moreover, we opted for a new strategy in the front-end electronics, the FlexToT ASIC, an own design ASIC based on a Time over Threshold (ToT) scheme. One of the most interesting features underlying a ToT architecture is the encoding of the analog input signal amplitude information into the duration of the output signals, delivering directly digital pulses. The electronic architecture helps substitute the Analog to Digital Converters (ADCs) for Time to Digital Converters (TDCs), and they are easily implemented in Field Programmable Gate Arrays (FPGA), reducing the consumption and the complexity of the design. A new prototype demonstrator based on SiPMs was implemented to validate the FlexToT ASIC for monolithic or segmented blocks. The design and characterization of the necessary front-end electronic to read-out the signals from the ASIC was carried out by evaluating its linearity and dynamic range, its performance with an external noise signal, as well as the differential nonlinearity obtained with the TDCs implemented in the FPGA. Furthermore, the electronic presented in this work is capable of working at high count rates and discriminates different phoswich scintillators. The FlexToT ASIC provides an excellent coincidence time resolution for events that correspond to 511 keV photopeak (128 ps FWHM), resolving the limitations of the poor timing resolution of the BrainPET prototype. Furthermore, the energy resolution with monolithic blocks read by FlexToT ASICs provides an energy resolution of 15.4 % FWHM at 511 keV. Finally, good results were obtained in the quality of the PET image and the resolving power of the FlexToT demonstrator, providing spatial resolutions in the centre of the FoV at about 1.4 mm FWHM.
Resumo:
LLas nuevas tecnologías orientadas a la nube, el internet de las cosas o las tendencias "as a service" se basan en el almacenamiento y procesamiento de datos en servidores remotos. Para garantizar la seguridad en la comunicación de dichos datos al servidor remoto, y en el manejo de los mismos en dicho servidor, se hace uso de diferentes esquemas criptográficos. Tradicionalmente, dichos sistemas criptográficos se centran en encriptar los datos mientras no sea necesario procesarlos (es decir, durante la comunicación y almacenamiento de los mismos). Sin embargo, una vez es necesario procesar dichos datos encriptados (en el servidor remoto), es necesario desencriptarlos, momento en el cual un intruso en dicho servidor podría a acceder a datos sensibles de usuarios del mismo. Es más, este enfoque tradicional necesita que el servidor sea capaz de desencriptar dichos datos, teniendo que confiar en la integridad de dicho servidor de no comprometer los datos. Como posible solución a estos problemas, surgen los esquemas de encriptación homomórficos completos. Un esquema homomórfico completo no requiere desencriptar los datos para operar con ellos, sino que es capaz de realizar las operaciones sobre los datos encriptados, manteniendo un homomorfismo entre el mensaje cifrado y el mensaje plano. De esta manera, cualquier intruso en el sistema no podría robar más que textos cifrados, siendo imposible un robo de los datos sensibles sin un robo de las claves de cifrado. Sin embargo, los esquemas de encriptación homomórfica son, actualmente, drás-ticamente lentos comparados con otros esquemas de encriptación clásicos. Una op¬eración en el anillo del texto plano puede conllevar numerosas operaciones en el anillo del texto encriptado. Por esta razón, están surgiendo distintos planteamientos sobre como acelerar estos esquemas para un uso práctico. Una de las propuestas para acelerar los esquemas homomórficos consiste en el uso de High-Performance Computing (HPC) usando FPGAs (Field Programmable Gate Arrays). Una FPGA es un dispositivo semiconductor que contiene bloques de lógica cuya interconexión y funcionalidad puede ser reprogramada. Al compilar para FPGAs, se genera un circuito hardware específico para el algorithmo proporcionado, en lugar de hacer uso de instrucciones en una máquina universal, lo que supone una gran ventaja con respecto a CPUs. Las FPGAs tienen, por tanto, claras difrencias con respecto a CPUs: -Arquitectura en pipeline: permite la obtención de outputs sucesivos en tiempo constante -Posibilidad de tener multiples pipes para computación concurrente/paralela. Así, en este proyecto: -Se realizan diferentes implementaciones de esquemas homomórficos en sistemas basados en FPGAs. -Se analizan y estudian las ventajas y desventajas de los esquemas criptográficos en sistemas basados en FPGAs, comparando con proyectos relacionados. -Se comparan las implementaciones con trabajos relacionados New cloud-based technologies, the internet of things or "as a service" trends are based in data storage and processing in a remote server. In order to guarantee a secure communication and handling of data, cryptographic schemes are used. Tradi¬tionally, these cryptographic schemes focus on guaranteeing the security of data while storing and transferring it, not while operating with it. Therefore, once the server has to operate with that encrypted data, it first decrypts it, exposing unencrypted data to intruders in the server. Moreover, the whole traditional scheme is based on the assumption the server is reliable, giving it enough credentials to decipher data to process it. As a possible solution for this issues, fully homomorphic encryption(FHE) schemes is introduced. A fully homomorphic scheme does not require data decryption to operate, but rather operates over the cyphertext ring, keeping an homomorphism between the cyphertext ring and the plaintext ring. As a result, an outsider could only obtain encrypted data, making it impossible to retrieve the actual sensitive data without its associated cypher keys. However, using homomorphic encryption(HE) schemes impacts performance dras-tically, slowing it down. One operation in the plaintext space can lead to several operations in the cyphertext space. Because of this, different approaches address the problem of speeding up these schemes in order to become practical. One of these approaches consists in the use of High-Performance Computing (HPC) using FPGAs (Field Programmable Gate Array). An FPGA is an integrated circuit designed to be configured by a customer or a designer after manufacturing - hence "field-programmable". Compiling into FPGA means generating a circuit (hardware) specific for that algorithm, instead of having an universal machine and generating a set of machine instructions. FPGAs have, thus, clear differences compared to CPUs: - Pipeline architecture, which allows obtaining successive outputs in constant time. -Possibility of having multiple pipes for concurrent/parallel computation. Thereby, In this project: -We present different implementations of FHE schemes in FPGA-based systems. -We analyse and study advantages and drawbacks of the implemented FHE schemes, compared to related work.
Resumo:
Quizás el campo de las telecomunicaciones sea uno de los campos en el que más se ha progresado en este último siglo y medio, con la ayuda de otros campos de la ciencia y la técnica tales como la computación, la física electrónica, y un gran número de disciplinas, que se han utilizado estos últimos 150 años en conjunción para mejorarse unas con la ayuda de otras. Por ejemplo, la química ayuda a comprender y mejorar campos como la medicina, que también a su vez se ve mejorada por los progresos en la electrónica creados por los físicos y químicos, que poseen herramientas más potentes para calcular y simular debido a los progresos computacionales. Otro de los campos que ha sufrido un gran avance en este último siglo es el de la automoción, aunque estancados en el motor de combustión, los vehículos han sufrido enormes cambios debido a la irrupción de los avances en la electrónica del automóvil con multitud de sistemas ya ampliamente integrados en los vehículos actuales. La Formula SAE® o Formula Student es una competición de diseño, organizada por la SAE International (Society of Automotive Engineers) para estudiantes de universidades de todo el mundo que promueve la ingeniería a través de una competición donde los miembros del equipo diseñan, construyen, desarrollan y compiten en un pequeño y potente monoplaza. En el ámbito educativo, evitando el sistema tradicional de clases magistrales, se introducen cambios en las metodologías de enseñanza y surge el proyecto de la Fórmula Student para lograr una mejora en las acciones formativas, que permitan ir incorporando nuevos objetivos y diseñar nuevas situaciones de aprendizaje que supongan una oportunidad para el desarrollo de competencias de los alumnos, mejorar su formación como ingenieros y contrastar sus progresos compitiendo con las mejores universidades del mundo. En este proyecto se pretende dotar a los alumnos de las escuelas de ingeniería de la UPM que desarrollan el vehículo de FSAE de una herramienta de telemetría con la que evaluar y probar comportamiento del vehículo de FSAE junto con sus subsistemas que ellos mismos diseñan, con el objetivo de evaluar el comportamiento, introducir mejoras, analizar resultados de una manera más rápida y cómoda, con el objetivo de poder progresar más rápidamente en su desarrollo, recibiendo y almacenando una realimentación directa e instantánea del funcionamiento mediante la lectura de los datos que circulan por el bus CAN del vehículo. También ofrece la posibilidad de inyectar datos a los sistemas conectados al bus CAN de manera remota. Se engloba en el conjunto de proyectos de la FSAE, más concretamente en los basados en la plataforma PIC32 y propone una solución conjunta con otros proyectos o también por sí sola. Para la ejecución del proyecto se fabricó una placa compuesta de dos placas de circuito impreso, la de la estación base que envía comandos, instrucciones y datos para inyectar en el bus CAN del vehículo mediante radiofrecuencia y la placa que incorpora el vehículo que envía las tramas que circulan por el bus CAN del vehículo con los identificadores deseados, ejecuta los comandos recibidos por radiofrecuencia y salva las tramas CAN en una memoria USB o SD Card. Las dos PCBs constituyen el hardware del proyecto. El software se compone de dos programas. Un programa para la PCB del vehículo que emite los datos a la estación base, codificado en lenguaje C con ayuda del entorno de desarrollo MPLAB de Microchip. El otro programa hecho con LabView para la PCB de la estación base que recibe los datos provenientes del vehículo y los interpreta. Se propone un hardware y una capa o funciones de software para los microcontroladores PIC32 (similar al de otros proyectos del FSAE) para la transmisión de las tramas del bus CAN del vehículo de manera inalámbrica a una estación base, capaz de insertar tramas en el bus CAN del vehículo enviadas desde la estación base. También almacena estas tramas CAN en un dispositivo USB o SD Card situado en el vehículo. Para la transmisión de los datos se hizo un estudio de las frecuencias de transmisión, la legislación aplicable y los tipos de transceptores. Se optó por utilizar la banda de radiofrecuencia de uso común ISM de 433MHz mediante el transceptor integrado CC110L de Texas Instruments altamente configurable y con interfaz SPI. Se adquirieron dos parejas de módulos compatibles, con amplificador de potencia o sin él. LabView controla la estación que recoge las tramas CAN vía RF y está dotada del mismo transceptor de radio junto con un puente de comunicaciones SPI-USB, al que se puede acceder de dos diferentes maneras, mediante librerías dll, o mediante NI-VISA con transferencias RAW-USB. La aplicación desarrollada posee una interfaz configurable por el usuario para la muestra de los futuros sensores o actuadores que se incorporen en el vehículo y es capaz de interpretar las tramas CAN, mostrarlas, gráfica, numéricamente y almacenar esta información, como si fuera el cuadro de instrumentos del vehículo. Existe una limitación de la velocidad global del sistema en forma de cuello de botella que se crea debido a las limitaciones del transceptor CC110L por lo que si no se desea filtrar los datos que se crean necesarios, sería necesario aumentar el número de canales de radio para altas ocupaciones del bus CAN. Debido a la pérdida de relaciones con el INSIA, no se pudo probar de manera real en el propio vehículo, pero se hicieron pruebas satisfactorias (hasta 1,6 km) con una configuración de tramas CAN estándar a una velocidad de transmisión de 1 Mbit/s y un tiempo de bit de 1 microsegundo. El periférico CAN del PIC32 se programará para cumplir con estas especificaciones de la ECU del vehículo, que se presupone que es la MS3 Sport de Bosch, de la que LabView interpretará las tramas CAN recibidas de manera inalámbrica. Para poder probar el sistema, ha sido necesario reutilizar el hardware y adaptar el software del primer prototipo creado, que emite tramas CAN preprogramadas con una latencia también programable y que simulará al bus CAN proporcionando los datos a transmitir por el sistema que incorpora el vehículo. Durante el desarrollo de este proyecto, en las etapas finales, el fabricante del puente de comunicaciones SPI-USB MCP2210 liberó una librería (dll) compatible y sin errores, por lo que se nos ofrecía una oportunidad interesante para la comparación de las velocidades de acceso al transceptor de radio, que se presuponía y se comprobó más eficiente que la solución ya hecha mediante NI-VISA. ABSTRACT. The Formula SAE competition is an international university applied to technological innovation in vehicles racing type formula, in which each team, made up of students, should design, construct and test a prototype each year within certain rules. The challenge of FSAE is that it is an educational project farther away than a master class. The goal of the present project is to make a tool for other students to use it in his projects related to FSAE to test and improve the vehicle, and, the improvements that can be provided by the electronics could be materialized in a victory and win the competition with this competitive advantage. A telemetry system was developed. It sends the data provided by the car’s CAN bus through a radio frequency transceiver and receive commands to execute on the system, it provides by a base station on the ground. Moreover, constant verification in real time of the status of the car or data parameters like the revolutions per minute, pressure from collectors, water temperature, and so on, can be accessed from the base station on the ground, so that, it could be possible to study the behaviour of the vehicle in early phases of the car development. A printed circuit board, composed of two boards, and two software programs in two different languages, have been developed, and built for the project implementation. The software utilized to design the PCB is Orcad10.5/Layout. The base station PCB on a PC receives data from the PCB connected to the vehicle’s CAN bus and sends commands like set CAN filters or masks, activate data logger or inject CAN frames. This PCB is connected to a PC via USB and contains a bridge USB-SPI to communicate with a similar transceiver on the vehicle PCB. LabView controls this part of the system. A special virtual Instrument (VI) had been created in order to add future new elements to the vehicle, is a dashboard, which reads the data passed from the main VI and represents them graphically to studying the behaviour of the car on track. In this special VI other alums can make modifications to accommodate the data provided from the vehicle CAN’s bus to new elements on the vehicle, show or save the CAN frames in the form or format they want. Two methods to access to SPI bus of CC110l RF transceiver over LabView have been developed with minimum changes between them. Access through NI-VISA (Virtual Instrument Software Architecture) which is a standard for configuring, programming, USB interfaces or other devices in National Instruments LabView. And access through DLL (dynamic link library) supplied by the manufacturer of the bridge USB-SPI, Microchip. Then the work is done in two forms, but the dll solution developed shows better behaviour, and increase the speed of the system because has less overload of the USB bus due to a better efficiency of the dll solution versus VISA solution. The PCB connected to the vehicle’s CAN bus receives commands from the base station PCB on a PC, and, acts in function of the command or execute actions like to inject packets into CAN bus or activate data logger. Also sends over RF the CAN frames present on the bus, which can be filtered, to avoid unnecessary radio emissions or overflowing the RF transceiver. This PCB consists of two basic pieces: A microcontroller with 32 bit architecture PIC32MX795F512L from Microchip and the radio transceiver integrated circuit CC110l from Texas Instruments. The PIC32MX795F512L has an integrated CAN and several peripherals like SPI controllers that are utilized to communicate with RF transceiver and SD Card. The USB controller on the PIC32 is utilized to store CAN data on a USB memory, and change notification peripheral is utilized like an external interrupt. Hardware for other peripherals is accessible. The software part of this PCB is coded in C with MPLAB from Microchip, and programming over PICkit 3 Programmer, also from Microchip. Some of his libraries have been modified to work properly with this project and other was created specifically for this project. In the phase for RF selection and design is made a study to clarify the general aspects of regulations for the this project in order to understand it and select the proper band, frequency, and radio transceiver for the activities developed in the project. From the different options available it selects a common use band ICM, with less regulation and free to emit with restrictions and disadvantages like high occupation. The transceiver utilized to transmit and receive the data CC110l is an integrated circuit which needs fewer components from Texas Instruments and it can be accessed through SPI bus. Basically is a state machine which changes his state whit commands received over an SPI bus or internal events. The transceiver has several programmable general purpose Inputs and outputs. These GPIOs are connected to PIC32 change notification input to generate an interrupt or connected to GPIO to MCP2210 USB-SPI bridge to inform to the base station for a packet received. A two pair of modules of CC110l radio module kit from different output power has been purchased which includes an antenna. This is to keep away from fabrication mistakes in RF hardware part or designs, although reference design and gerbers files are available on the webpage of the chip manufacturer. A neck bottle is present on the complete system, because the maximum data rate of CC110l transceiver is a half than CAN bus data rate, hence for high occupation of CAN bus is recommendable to filter the data or add more radio channels, because the buffers can’t sustain this load along the time. Unfortunately, during the development of the project, the relations with the INSIA, who develops the vehicle, was lost, for this reason, will be made impossible to test the final phases of the project like integration on the car, final test of integration, place of the antenna, enclosure of the electronics, connectors selection, etc. To test or evaluate the system, it was necessary to simulate the CAN bus with a hardware to feed the system with entry data. An early hardware prototype was adapted his software to send programed CAN frames at a fixed data rate and certain timing who simulate several levels of occupation of the CAN Bus. This CAN frames emulates the Bosch ECU MS3 Sport.
Resumo:
The aim of this work is to simulate and optically characterize the piezoelectric performance of complementary metal oxide semiconductor (CMOS) compatible microcantilevers based on aluminium nitride (AlN) and manufactured at room temperature. This study should facilitate the integration of piezoelectric micro-electro-mechanical systems (MEMS) such as microcantilevers, in CMOS technology. Besides compatibility with standard integrated circuit manufacturing procedures, low temperature processing also translates into higher throughput and, as a consequence, lower manufacturing costs. Thus, the use of the piezoelectric properties of AlN manufactured by reactive sputtering at room temperature is an important step towards the integration of this type of devices within future CMOS technology standards. To assess the reliability of our fabrication process, we have manufactured arrays of free-standing microcantilever beams of variable dimension and studied their piezoelectric performance. The characterization of the first out-of-plane modes of AlN-actuated piezoelectric microcantilevers has been carried out using two optical techniques: laser Doppler vibrometry (LDV) and white light interferometry (WLI). In order to actuate the cantilevers, a periodic chirp signal in certain frequency ranges was applied between the device electrodes. The nature of the different vibration modes detected has been studied and compared with that obtained by a finite element model based simulation (COMSOL Multiphysics), showing flexural as well as torsional modes. The correspondence between theoretical and experimental data is reasonably good, probing the viability of this high throughput and CMOS compatible fabrication process. To complete the study, X-ray diffraction as well as d33 piezoelectric coefficient measurements were also carried out.
Resumo:
El desarrollo da las nuevas tecnologías permite a los ingenieros llevar al límite el funcionamiento de los circuitos integrados (Integrated Circuits, IC). Las nuevas generaciones de procesadores, DSPs o FPGAs son capaces de procesar la información a una alta velocidad, con un alto consumo de energía, o esperar en modo de baja potencia con el mínimo consumo posible. Esta gran variación en el consumo de potencia y el corto tiempo necesario para cambiar de un nivel al otro, afecta a las especificaciones del Módulo de Regulador de Tensión (Voltage Regulated Module, VRM) que alimenta al IC. Además, las características adicionales obligatorias, tales como adaptación del nivel de tensión (Adaptive Voltage Positioning, AVP) y escalado dinámico de la tensión (Dynamic Voltage Scaling, DVS), imponen requisitos opuestas en el diseño de la etapa de potencia del VRM. Para poder soportar las altas variaciones de los escalones de carga, el condensador de filtro de salida del VRM se ha de sobredimensionar, penalizando la densidad de energía y el rendimiento durante la operación de DVS. Por tanto, las actuales tendencias de investigación se centran en mejorar la respuesta dinámica del VRM, mientras se reduce el tamaño del condensador de salida. La reducción del condensador de salida lleva a menor coste y una prolongación de la vida del sistema ya que se podría evitar el uso de condensadores voluminosos, normalmente implementados con condensadores OSCON. Una ventaja adicional es que reduciendo el condensador de salida, el DVS se puede realizar más rápido y con menor estrés de la etapa de potencia, ya que la cantidad de carga necesaria para cambiar la tensión de salida es menor. El comportamiento dinámico del sistema con un control lineal (Control Modo Tensión, VMC, o Control Corriente de Pico, Peak Current Mode Control, PCMC,…) está limitado por la frecuencia de conmutación del convertidor y por el tamaño del filtro de salida. La reducción del condensador de salida se puede lograr incrementando la frecuencia de conmutación, así como incrementando el ancho de banda del sistema, y/o aplicando controles avanzados no-lineales. Usando esos controles, las variables del estado se saturan para conseguir el nuevo régimen permanente en un tiempo mínimo, así como el filtro de salida, más específicamente la pendiente de la corriente de la bobina, define la respuesta de la tensión de salida. Por tanto, reduciendo la inductancia de la bobina de salida, la corriente de bobina llega más rápido al nuevo régimen permanente, por lo que una menor cantidad de carga es tomada del condensador de salida durante el tránsito. El inconveniente de esa propuesta es que el rendimiento del sistema es penalizado debido al incremento de pérdidas de conmutación y las corrientes RMS. Para conseguir tanto la reducción del condensador de salida como el alto rendimiento del sistema, mientras se satisfacen las estrictas especificaciones dinámicas, un convertidor multifase es adoptado como estándar para aplicaciones VRM. Para asegurar el reparto de las corrientes entre fases, el convertidor multifase se suele implementar con control de modo de corriente. Para superar la limitación impuesta por el filtro de salida, la segunda posibilidad para reducir el condensador de salida es aplicar alguna modificación topológica (Topologic modifications) de la etapa básica de potencia para incrementar la pendiente de la corriente de bobina y así reducir la duración de tránsito. Como el transitorio se ha reducido, una menor cantidad de carga es tomada del condensador de salida bajo el mismo escalón de la corriente de salida, con lo cual, el condensador de salida se puede reducir para lograr la misma desviación de la tensión de salida. La tercera posibilidad para reducir el condensador de salida del convertidor es introducir un camino auxiliar de energía (additional energy path, AEP) para compensar el desequilibrio de la carga del condensador de salida reduciendo consecuentemente la duración del transitorio y la desviación de la tensión de salida. De esta manera, durante el régimen permanente, el sistema tiene un alto rendimiento debido a que el convertidor principal con bajo ancho de banda es diseñado para trabajar con una frecuencia de conmutación moderada para conseguir requisitos estáticos. Por otro lado, el comportamiento dinámico durante los transitorios es determinado por el AEP con un alto ancho de banda. El AEP puede ser implementado como un camino resistivo, como regulador lineal (Linear regulator, LR) o como un convertidor conmutado. Las dos primeras implementaciones proveen un mayor ancho de banda, acosta del incremento de pérdidas durante el transitorio. Por otro lado, la implementación del convertidor computado presenta menor ancho de banda, limitado por la frecuencia de conmutación, aunque produce menores pérdidas comparado con las dos anteriores implementaciones. Dependiendo de la aplicación, la implementación y la estrategia de control del sistema, hay una variedad de soluciones propuestas en el Estado del Arte (State-of-the-Art, SoA), teniendo diferentes propiedades donde una solución ofrece más ventajas que las otras, pero también unas desventajas. En general, un sistema con AEP ideal debería tener las siguientes propiedades: 1. El impacto del AEP a las pérdidas del sistema debería ser mínimo. A lo largo de la operación, el AEP genera pérdidas adicionales, con lo cual, en el caso ideal, el AEP debería trabajar por un pequeño intervalo de tiempo, solo durante los tránsitos; la otra opción es tener el AEP constantemente activo pero, por la compensación del rizado de la corriente de bobina, se generan pérdidas innecesarias. 2. El AEP debería ser activado inmediatamente para minimizar la desviación de la tensión de salida. Para conseguir una activación casi instantánea, el sistema puede ser informado por la carga antes del escalón o el sistema puede observar la corriente del condensador de salida, debido a que es la primera variable del estado que actúa a la perturbación de la corriente de salida. De esa manera, el AEP es activado con casi cero error de la tensión de salida, logrando una menor desviación de la tensión de salida. 3. El AEP debería ser desactivado una vez que el nuevo régimen permanente es detectado para evitar los transitorios adicionales de establecimiento. La mayoría de las soluciones de SoA estiman la duración del transitorio, que puede provocar un transitorio adicional si la estimación no se ha hecho correctamente (por ejemplo, si la corriente de bobina del convertidor principal tiene un nivel superior o inferior al necesitado, el regulador lento del convertidor principal tiene que compensar esa diferencia una vez que el AEP es desactivado). Otras soluciones de SoA observan las variables de estado, asegurando que el sistema llegue al nuevo régimen permanente, o pueden ser informadas por la carga. 4. Durante el transitorio, como mínimo un subsistema, o bien el convertidor principal o el AEP, debería operar en el lazo cerrado. Implementando un sistema en el lazo cerrado, preferiblemente el subsistema AEP por su ancho de banda elevado, se incrementa la robustez del sistema a los parásitos. Además, el AEP puede operar con cualquier tipo de corriente de carga. Las soluciones que funcionan en el lazo abierto suelen preformar el control de balance de carga con mínimo tiempo, así reducen la duración del transitorio y tienen un impacto menor a las pérdidas del sistema. Por otro lado, esas soluciones demuestran una alta sensibilidad a las tolerancias y parásitos de los componentes. 5. El AEP debería inyectar la corriente a la salida en una manera controlada, así se reduce el riesgo de unas corrientes elevadas y potencialmente peligrosas y se incrementa la robustez del sistema bajo las perturbaciones de la tensión de entrada. Ese problema suele ser relacionado con los sistemas donde el AEP es implementado como un convertidor auxiliar. El convertidor auxiliar es diseñado para una potencia baja, con lo cual, los dispositivos elegidos son de baja corriente/potencia. Si la corriente no es controlada, bajo un pico de tensión de entrada provocada por otro parte del sistema (por ejemplo, otro convertidor conectado al mismo bus), se puede llegar a un pico en la corriente auxiliar que puede causar la perturbación de tensión de salida e incluso el fallo de los dispositivos del convertidor auxiliar. Sin embargo, cuando la corriente es controlada, usando control del pico de corriente o control con histéresis, la corriente auxiliar tiene el control con prealimentación (feed-forward) de tensión de entrada y la corriente es definida y limitada. Por otro lado, si la solución utiliza el control de balance de carga, el sistema puede actuar de forma deficiente si la tensión de entrada tiene un valor diferente del nominal, provocando que el AEP inyecta/toma más/menos carga que necesitada. 6. Escalabilidad del sistema a convertidores multifase. Como ya ha sido comentado anteriormente, para las aplicaciones VRM por la corriente de carga elevada, el convertidor principal suele ser implementado como multifase para distribuir las perdidas entre las fases y bajar el estrés térmico de los dispositivos. Para asegurar el reparto de las corrientes, normalmente un control de modo corriente es usado. Las soluciones de SoA que usan VMC son limitadas a la implementación con solo una fase. Esta tesis propone un nuevo método de control del flujo de energía por el AEP y el convertidor principal. El concepto propuesto se basa en la inyección controlada de la corriente auxiliar al nodo de salida donde la amplitud de la corriente es n-1 veces mayor que la corriente del condensador de salida con las direcciones apropiadas. De esta manera, el AEP genera un condensador virtual cuya capacidad es n veces mayor que el condensador físico y reduce la impedancia de salida. Como el concepto propuesto reduce la impedancia de salida usando el AEP, el concepto es llamado Output Impedance Correction Circuit (OICC) concept. El concepto se desarrolla para un convertidor tipo reductor síncrono multifase con control modo de corriente CMC (incluyendo e implementación con una fase) y puede operar con la tensión de salida constante o con AVP. Además, el concepto es extendido a un convertidor de una fase con control modo de tensión VMC. Durante la operación, el control de tensión de salida de convertidor principal y control de corriente del subsistema OICC están siempre cerrados, incrementando la robustez a las tolerancias de componentes y a los parásitos del cirquito y permitiendo que el sistema se pueda enfrentar a cualquier tipo de la corriente de carga. Según el método de control propuesto, el sistema se puede encontrar en dos estados: durante el régimen permanente, el sistema se encuentra en el estado Idle y el subsistema OICC esta desactivado. Por otro lado, durante el transitorio, el sistema se encuentra en estado Activo y el subsistema OICC está activado para reducir la impedancia de salida. El cambio entre los estados se hace de forma autónoma: el sistema entra en el estado Activo observando la corriente de condensador de salida y vuelve al estado Idle cunado el nuevo régimen permanente es detectado, observando las variables del estado. La validación del concepto OICC es hecha aplicándolo a un convertidor tipo reductor síncrono con dos fases y de 30W cuyo condensador de salida tiene capacidad de 140μF, mientras el factor de multiplicación n es 15, generando en el estado Activo el condensador virtual de 2.1mF. El subsistema OICC es implementado como un convertidor tipo reductor síncrono con PCMC. Comparando el funcionamiento del convertidor con y sin el OICC, los resultados demuestran que se ha logrado una reducción de la desviación de tensión de salida con factor 12, tanto con funcionamiento básico como con funcionamiento AVP. Además, los resultados son comparados con un prototipo de referencia que tiene la misma etapa de potencia y un condensador de salida físico de 2.1mF. Los resultados demuestran que los dos sistemas tienen el mismo comportamiento dinámico. Más aun, se ha cuantificado el impacto en las pérdidas del sistema operando bajo una corriente de carga pulsante y bajo DVS. Se demuestra que el sistema con OICC mejora el rendimiento del sistema, considerando las pérdidas cuando el sistema trabaja con la carga pulsante y con DVS. Por lo último, el condensador de salida de sistema con OICC es mucho más pequeño que el condensador de salida del convertidor de referencia, con lo cual, por usar el concepto OICC, la densidad de energía se incrementa. En resumen, las contribuciones principales de la tesis son: • El concepto propuesto de Output Impedance Correction Circuit (OICC), • El control a nivel de sistema basado en el método usado para cambiar los estados de operación, • La implementación del subsistema OICC en lazo cerrado conjunto con la implementación del convertidor principal, • La cuantificación de las perdidas dinámicas bajo la carga pulsante y bajo la operación DVS, y • La robustez del sistema bajo la variación del condensador de salida y bajo los escalones de carga consecutiva. ABSTRACT Development of new technologies allows engineers to push the performance of the integrated circuits to its limits. New generations of processors, DSPs or FPGAs are able to process information with high speed and high consumption or to wait in low power mode with minimum possible consumption. This huge variation in power consumption and the short time needed to change from one level to another, affect the specifications of the Voltage Regulated Module (VRM) that supplies the IC. Furthermore, additional mandatory features, such as Adaptive Voltage Positioning (AVP) and Dynamic Voltage Scaling (DVS), impose opposite trends on the design of the VRM power stage. In order to cope with high load-step amplitudes, the output capacitor of the VRM power stage output filter is drastically oversized, penalizing power density and the efficiency during the DVS operation. Therefore, the ongoing research trend is directed to improve the dynamic response of the VRM while reducing the size of the output capacitor. The output capacitor reduction leads to a smaller cost and longer life-time of the system since the big bulk capacitors, usually implemented with OSCON capacitors, may not be needed to achieve the desired dynamic behavior. An additional advantage is that, by reducing the output capacitance, dynamic voltage scaling (DVS) can be performed faster and with smaller stress on the power stage, since the needed amount of charge to change the output voltage is smaller. The dynamic behavior of the system with a linear control (Voltage mode control, VMC, Peak Current Mode Control, PCMC,…) is limited by the converter switching frequency and filter size. The reduction of the output capacitor can be achieved by increasing the switching frequency of the converter, thus increasing the bandwidth of the system, and/or by applying advanced non-linear controls. Applying nonlinear control, the system variables get saturated in order to reach the new steady-state in a minimum time, thus the output filter, more specifically the output inductor current slew-rate, determines the output voltage response. Therefore, by reducing the output inductor value, the inductor current reaches faster the new steady state, so a smaller amount of charge is taken from the output capacitor during the transient. The drawback of this approach is that the system efficiency is penalized due to increased switching losses and RMS currents. In order to achieve both the output capacitor reduction and high system efficiency, while satisfying strict dynamic specifications, a Multiphase converter system is adopted as a standard for VRM applications. In order to ensure the current sharing among the phases, the multiphase converter is usually implemented with current mode control. In order to overcome the limitation imposed by the output filter, the second possibility to reduce the output capacitor is to apply Topologic modifications of the basic power stage topology in order to increase the slew-rate of the inductor current and, therefore, reduce the transient duration. Since the transient is reduced, smaller amount of charge is taken from the output capacitor under the same load current, thus, the output capacitor can be reduced to achieve the same output voltage deviation. The third possibility to reduce the output capacitor of the converter is to introduce an additional energy path (AEP) to compensate the charge unbalance of the output capacitor, consequently reducing the transient time and output voltage deviation. Doing so, during the steady-state operation the system has high efficiency because the main low-bandwidth converter is designed to operate at moderate switching frequency, to meet the static requirements, whereas the dynamic behavior during the transients is determined by the high-bandwidth auxiliary energy path. The auxiliary energy path can be implemented as a resistive path, as a Linear regulator, LR, or as a switching converter. The first two implementations provide higher bandwidth, at the expense of increasing losses during the transient. On the other hand, the switching converter implementation presents lower bandwidth, limited by the auxiliary converter switching frequency, though it produces smaller losses compared to the two previous implementations. Depending on the application, the implementation and the control strategy of the system, there is a variety of proposed solutions in the State-of-the-Art (SoA), having different features where one solution offers some advantages over the others, but also some disadvantages. In general, an ideal additional energy path system should have the following features: 1. The impact on the system losses should be minimal. During its operation, the AEP generates additional losses, thus ideally, the AEP should operate for a short period of time, only when the transient is occurring; the other option is to have the AEP constantly on, but due to the inductor current ripple compensation at the output, unnecessary losses are generated. 2. The AEP should be activated nearly instantaneously to prevent bigger output voltage deviation. To achieve near instantaneous activation, the converter system can be informed by the load prior to the load-step or the system can observe the output capacitor current, which is the first system state variable that reacts on the load current perturbation. In this manner, the AEP is turned on with near zero output voltage error, providing smaller output voltage deviation. 3. The AEP should be deactivated once the new steady state is reached to avoid additional settling transients. Most of the SoA solutions estimate duration of the transient which may cause additional transient if the estimation is not performed correctly (e.g. if the main converter inductor current has higher or lower value than needed, the slow regulator of the main converter needs to compensate the difference after the AEP is deactivated). Other SoA solutions are observing state variables, ensuring that the system reaches the new steady state or they are informed by the load. 4. During the transient, at least one subsystem, either the main converter or the AEP, should be in closed-loop. Implementing a closed loop system, preferably the AEP subsystem, due its higher bandwidth, increases the robustness under system tolerances and circuit parasitic. In addition, the AEP can operate with any type of load. The solutions that operate in open loop usually perform minimum time charge balance control, thus reducing the transient length and minimizing the impact on the losses, however they are very sensitive to tolerances and parasitics. 5. The AEP should inject current at the output in a controlled manner, thus reducing the risk of high and potentially damaging currents and increasing robustness on the input voltage deviation. This issue is mainly related to the systems where AEP is implemented as auxiliary converter. The auxiliary converter is designed for small power and, as such, the MOSFETs are rated for small power/currents. If the current is not controlled, due to the some unpredicted spike in input voltage caused by some other part of the system (e.g. different converter), it may lead to a current spike in auxiliary current which will cause the perturbation of the output voltage and even failure of the switching components of auxiliary converter. In the case when the current is controlled, using peak CMC or Hysteretic Window CMC, the auxiliary converter has inherent feed-forwarding of the input voltage in current control and the current is defined and limited. Furthermore, if the solution employs charge balance control, the system may perform poorly if the input voltage has different value than the nominal, causing that AEP injects/extracts more/less charge than needed. 6. Scalability of the system to multiphase converters. As commented previously, in VRM applications, due to the high load currents, the main converters are implemented as multiphase to redistribute losses among the modules, lowering temperature stress of the components. To ensure the current sharing, usually a Current Mode Control (CMC) is employed. The SoA solutions that are implemented with VMC are limited to a single stage implementation. This thesis proposes a novel control method of the energy flow through the AEP and the main converter system. The proposed concept relays on a controlled injection of the auxiliary current at the output node where the instantaneous current value is n-1 times bigger than the output capacitor current with appropriate directions. Doing so, the AEP creates an equivalent n times bigger virtual capacitor at the output, thus reducing the output impedance. Due to the fact that the proposed concept reduces the output impedance using the AEP, it has been named the Output Impedance Correction Circuit (OICC) concept. The concept is developed for a multiphase CMC synchronous buck converter (including a single phase implementation), operating with a constant output voltage and with AVP feature. Further, it is extended to a single phase VMC synchronous buck converter. During the operation, the main converter voltage loop and the OICC subsystem capacitor current loop is constantly closed, increasing the robustness under system tolerances and circuit parasitic and allowing the system to operate with any load-current shape or pattern. According to the proposed control method, the system operates in two states: during the steady-state the system is in the Idle state and the OICC subsystem is deactivated, while during the load-step transient the system is in the Active state and the OICC subsystem is activated in order to reduce the output impedance. The state changes are performed autonomously: the system enters in the Active state by observing the output capacitor current and it returns back to the Idle state when the steady-state operation is detected by observing the state variables. The validation of the OICC concept has been done by applying it to a 30W two phase synchronous buck converter with 140μF output capacitor and with the multiplication factor n equal to 15, generating during the Active state equivalent output capacitor of 2.1mF. The OICC subsystem is implemented as single phase PCMC synchronous buck converter. Comparing the converter operation with and without the OICC the results demonstrate that the 12 times reduction of the output voltage deviation is achieved, for both basic operation and for the AVP operation. Furthermore, the results have been compared to a reference prototype which has the same power stage and a fiscal output capacitor of 2.1mF. The results show that the two systems have the same dynamic behavior. Moreover, an impact on the system losses under the pulsating load and DVS operation has been quantified and it has been demonstrated that the OICC system has improved the system efficiency, considering the losses when the system operates with the pulsating load and the DVS operation. Lastly, the output capacitor of the OICC system is much smaller than the reference design output capacitor, therefore, by applying the OICC concept the power density can be increased. In summary, the main contributions of the thesis are: • The proposed Output Impedance Correction Circuit (OICC) concept, • The system level control based on the used approach to change the states of operation, • The OICC subsystem closed-loop implementation, together with the main converter implementation, • The dynamic losses under the pulsating load and the DVS operation quantification, and • The system robustness on the capacitor impedance variation and consecutive load-steps.